|
|
@@ -145,7 +145,8 @@ int ClassFlowCNNGeneral::PointerEvalHybridNew(float number, float number_of_pred
|
|
|
{
|
|
|
// on first digit is no spezial logic for transition needed
|
|
|
// we use the recognition as given. The result is the int value of the recognition
|
|
|
- result = (int) ((int) trunc(number) + 10) % 10;
|
|
|
+ // add precisition of 2 digits and round before trunc
|
|
|
+ result = (int) ((int) trunc(round((number+10 % 10)*100)) ) / 100;
|
|
|
|
|
|
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "PointerEvalHybridNew - No predecessor - Result = " + std::to_string(result) +
|
|
|
" number: " + std::to_string(number) + " number_of_predecessors = " + std::to_string(number_of_predecessors)+ " eval_predecessors = " + std::to_string(eval_predecessors) + " Digital_Uncertainty = " + std::to_string(Digital_Uncertainty));
|
|
|
@@ -484,7 +485,7 @@ bool ClassFlowCNNGeneral::doFlow(string time)
|
|
|
|
|
|
if (!doAlignAndCut(time)){
|
|
|
return false;
|
|
|
- };
|
|
|
+ }
|
|
|
|
|
|
LogFile.WriteToFile(ESP_LOG_DEBUG, TAG, "doFlow after alignment");
|
|
|
|
|
|
@@ -852,10 +853,9 @@ bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
|
|
|
|
|
|
bool ClassFlowCNNGeneral::isExtendedResolution(int _number)
|
|
|
{
|
|
|
- if (!(CNNType == Digital))
|
|
|
- return true;
|
|
|
-
|
|
|
- return false;
|
|
|
+ if (CNNType == Digital)
|
|
|
+ return false;
|
|
|
+ return true;
|
|
|
}
|
|
|
|
|
|
|