/* Copyright 2019 The TensorFlow Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ==============================================================================*/ #include "tensorflow/lite/micro/test_helpers.h" #include #include "tensorflow/lite/c/common.h" #include "tensorflow/lite/core/api/tensor_utils.h" #include "tensorflow/lite/kernels/internal/compatibility.h" #include "tensorflow/lite/micro/micro_utils.h" #include "tensorflow/lite/schema/schema_generated.h" namespace tflite { namespace testing { namespace { class StackAllocator : public flatbuffers::Allocator { public: StackAllocator() : data_(data_backing_), data_size_(0) {} uint8_t* allocate(size_t size) override { TFLITE_DCHECK((data_size_ + size) <= kStackAllocatorSize); uint8_t* result = data_; data_ += size; data_size_ += size; return result; } void deallocate(uint8_t* p, size_t) override {} static StackAllocator& instance() { // Avoid using true dynamic memory allocation to be portable to bare metal. static char inst_memory[sizeof(StackAllocator)]; static StackAllocator* inst = new (inst_memory) StackAllocator; return *inst; } static constexpr size_t kStackAllocatorSize = 4096; private: uint8_t data_backing_[kStackAllocatorSize]; uint8_t* data_; int data_size_; }; flatbuffers::FlatBufferBuilder* BuilderInstance() { static char inst_memory[sizeof(flatbuffers::FlatBufferBuilder)]; static flatbuffers::FlatBufferBuilder* inst = new (inst_memory) flatbuffers::FlatBufferBuilder( StackAllocator::kStackAllocatorSize, &StackAllocator::instance()); return inst; } // A wrapper around FlatBuffer API to help build model easily. class ModelBuilder { public: typedef int32_t Tensor; typedef int Operator; typedef int Node; // `builder` needs to be available until BuildModel is called. explicit ModelBuilder(flatbuffers::FlatBufferBuilder* builder) : builder_(builder) {} // Registers an operator that will be used in the model. Operator RegisterOp(BuiltinOperator op, const char* custom_code, int32_t version); // Adds a tensor to the model. Tensor AddTensor(TensorType type, std::initializer_list shape) { return AddTensorImpl(type, /* is_variable */ false, shape); } // Adds a variable tensor to the model. Tensor AddVariableTensor(TensorType type, std::initializer_list shape) { return AddTensorImpl(type, /* is_variable */ true, shape); } // Adds a node to the model with given input and output Tensors. Node AddNode(Operator op, std::initializer_list inputs, std::initializer_list outputs); // Constructs the flatbuffer model using `builder_` and return a pointer to // it. The returned model has the same lifetime as `builder_`. const Model* BuildModel(std::initializer_list inputs, std::initializer_list outputs); private: // Adds a tensor to the model. Tensor AddTensorImpl(TensorType type, bool is_variable, std::initializer_list shape); flatbuffers::FlatBufferBuilder* builder_; static constexpr int kMaxOperatorCodes = 10; flatbuffers::Offset operator_codes_[kMaxOperatorCodes]; int next_operator_code_id_ = 0; static constexpr int kMaxOperators = 50; flatbuffers::Offset operators_[kMaxOperators]; int next_operator_id_ = 0; static constexpr int kMaxTensors = 50; flatbuffers::Offset tensors_[kMaxTensors]; int next_tensor_id_ = 0; }; ModelBuilder::Operator ModelBuilder::RegisterOp(BuiltinOperator op, const char* custom_code, int32_t version) { TFLITE_DCHECK(next_operator_code_id_ <= kMaxOperatorCodes); operator_codes_[next_operator_code_id_] = tflite::CreateOperatorCodeDirect(*builder_, op, custom_code, version); next_operator_code_id_++; return next_operator_code_id_ - 1; } ModelBuilder::Node ModelBuilder::AddNode( ModelBuilder::Operator op, std::initializer_list inputs, std::initializer_list outputs) { TFLITE_DCHECK(next_operator_id_ <= kMaxOperators); operators_[next_operator_id_] = tflite::CreateOperator( *builder_, op, builder_->CreateVector(inputs.begin(), inputs.size()), builder_->CreateVector(outputs.begin(), outputs.size()), BuiltinOptions_NONE); next_operator_id_++; return next_operator_id_ - 1; } const Model* ModelBuilder::BuildModel( std::initializer_list inputs, std::initializer_list outputs) { // Model schema requires an empty buffer at idx 0. constexpr size_t kBufferSize = 1; const flatbuffers::Offset buffers[kBufferSize] = { tflite::CreateBuffer(*builder_)}; // TFLM only supports single subgraph. constexpr size_t subgraphs_size = 1; const flatbuffers::Offset subgraphs[subgraphs_size] = { tflite::CreateSubGraph( *builder_, builder_->CreateVector(tensors_, next_tensor_id_), builder_->CreateVector(inputs.begin(), inputs.size()), builder_->CreateVector(outputs.begin(), outputs.size()), builder_->CreateVector(operators_, next_operator_id_), builder_->CreateString("test_subgraph"))}; const flatbuffers::Offset model_offset = tflite::CreateModel( *builder_, 0, builder_->CreateVector(operator_codes_, next_operator_code_id_), builder_->CreateVector(subgraphs, subgraphs_size), builder_->CreateString("teset_model"), builder_->CreateVector(buffers, kBufferSize)); tflite::FinishModelBuffer(*builder_, model_offset); void* model_pointer = builder_->GetBufferPointer(); const Model* model = flatbuffers::GetRoot(model_pointer); return model; } ModelBuilder::Tensor ModelBuilder::AddTensorImpl( TensorType type, bool is_variable, std::initializer_list shape) { TFLITE_DCHECK(next_tensor_id_ <= kMaxTensors); tensors_[next_tensor_id_] = tflite::CreateTensor( *builder_, builder_->CreateVector(shape.begin(), shape.size()), type, /* buffer */ 0, /* name */ 0, /* quantization */ 0, /* is_variable */ is_variable, /* sparsity */ 0); next_tensor_id_++; return next_tensor_id_ - 1; } const Model* BuildSimpleStatefulModel() { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance(); ModelBuilder model_builder(fb_builder); const int op_id = model_builder.RegisterOp(BuiltinOperator_CUSTOM, "simple_stateful_op", 0); const int input_tensor = model_builder.AddTensor(TensorType_UINT8, {3}); const int median_tensor = model_builder.AddTensor(TensorType_UINT8, {3}); const int invoke_count_tensor = model_builder.AddTensor(TensorType_INT32, {1}); model_builder.AddNode(op_id, {input_tensor}, {median_tensor, invoke_count_tensor}); return model_builder.BuildModel({input_tensor}, {median_tensor, invoke_count_tensor}); } const Model* BuildSimpleModelWithBranch() { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* fb_builder = BuilderInstance(); ModelBuilder model_builder(fb_builder); /* Model structure | t0 +------| | v | +---------+ | | n0 | | | | | +---------+ v + | +---------+ | t1 | n1 | | | | | +---------+ | | | t2 | v | +---------+ +-->| n2 | | | +-------|-+ |t3 v */ const int op_id = model_builder.RegisterOp(BuiltinOperator_CUSTOM, "mock_custom", /* version= */ 0); const int t0 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); const int t1 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); const int t2 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); const int t3 = model_builder.AddTensor(TensorType_FLOAT32, {2, 2, 3}); model_builder.AddNode(op_id, {t0}, {t1}); // n0 model_builder.AddNode(op_id, {t0}, {t2}); // n1 model_builder.AddNode(op_id, {t1, t2}, {t3}); // n2 return model_builder.BuildModel({t0}, {t3}); } const Model* BuildSimpleMockModel() { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); constexpr size_t buffer_data_size = 1; const uint8_t buffer_data[buffer_data_size] = {21}; constexpr size_t buffers_size = 2; const Offset buffers[buffers_size] = { CreateBuffer(*builder), CreateBuffer(*builder, builder->CreateVector(buffer_data, buffer_data_size))}; constexpr size_t tensor_shape_size = 1; const int32_t tensor_shape[tensor_shape_size] = {1}; constexpr size_t tensors_size = 4; const Offset tensors[tensors_size] = { CreateTensor(*builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_input_tensor"), 0, false), CreateTensor(*builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_UINT8, 1, builder->CreateString("test_weight_tensor"), 0, false), CreateTensor(*builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_output_tensor"), 0, false), CreateTensor(*builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_output2_tensor"), 0, false), }; constexpr size_t inputs_size = 1; const int32_t inputs[inputs_size] = {0}; constexpr size_t outputs_size = 2; const int32_t outputs[outputs_size] = {2, 3}; constexpr size_t operator_inputs_size = 2; const int32_t operator_inputs[operator_inputs_size] = {0, 1}; constexpr size_t operator_outputs_size = 1; const int32_t operator_outputs[operator_outputs_size] = {2}; const int32_t operator2_outputs[operator_outputs_size] = {3}; constexpr size_t operators_size = 2; const Offset operators[operators_size] = { CreateOperator( *builder, 0, builder->CreateVector(operator_inputs, operator_inputs_size), builder->CreateVector(operator_outputs, operator_outputs_size), BuiltinOptions_NONE), CreateOperator( *builder, 0, builder->CreateVector(operator_inputs, operator_inputs_size), builder->CreateVector(operator2_outputs, operator_outputs_size), BuiltinOptions_NONE), }; constexpr size_t subgraphs_size = 1; const Offset subgraphs[subgraphs_size] = { CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size), builder->CreateVector(inputs, inputs_size), builder->CreateVector(outputs, outputs_size), builder->CreateVector(operators, operators_size), builder->CreateString("test_subgraph"))}; constexpr size_t operator_codes_size = 1; const Offset operator_codes[operator_codes_size] = { CreateOperatorCodeDirect(*builder, BuiltinOperator_CUSTOM, "mock_custom", 0)}; const Offset model_offset = CreateModel( *builder, 0, builder->CreateVector(operator_codes, operator_codes_size), builder->CreateVector(subgraphs, subgraphs_size), builder->CreateString("test_model"), builder->CreateVector(buffers, buffers_size)); FinishModelBuffer(*builder, model_offset); void* model_pointer = builder->GetBufferPointer(); const Model* model = flatbuffers::GetRoot(model_pointer); return model; } const Model* BuildComplexMockModel() { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); constexpr size_t buffer_data_size = 1; const uint8_t buffer_data_1[buffer_data_size] = {21}; const uint8_t buffer_data_2[buffer_data_size] = {21}; const uint8_t buffer_data_3[buffer_data_size] = {21}; constexpr size_t buffers_size = 7; const Offset buffers[buffers_size] = { // Op 1 buffers: CreateBuffer(*builder), CreateBuffer(*builder), CreateBuffer(*builder, builder->CreateVector(buffer_data_1, buffer_data_size)), // Op 2 buffers: CreateBuffer(*builder), CreateBuffer(*builder, builder->CreateVector(buffer_data_2, buffer_data_size)), // Op 3 buffers: CreateBuffer(*builder), CreateBuffer(*builder, builder->CreateVector(buffer_data_3, buffer_data_size)), }; constexpr size_t tensor_shape_size = 1; const int32_t tensor_shape[tensor_shape_size] = {1}; constexpr size_t tensors_size = 10; const Offset tensors[tensors_size] = { // Op 1 inputs: CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_input_tensor_1"), 0, false /* is_variable */), CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 1, builder->CreateString("test_variable_tensor_1"), 0, true /* is_variable */), CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_1"), 0, false /* is_variable */), // Op 1 output / Op 2 input: CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_output_tensor_1"), 0, false /* is_variable */), // Op 2 inputs: CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 1, builder->CreateString("test_variable_tensor_2"), 0, true /* is_variable */), CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_2"), 0, false /* is_variable */), // Op 2 output / Op 3 input: CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_output_tensor_2"), 0, false /* is_variable */), // Op 3 inputs: CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 1, builder->CreateString("test_variable_tensor_3"), 0, true /* is_variable */), CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_UINT8, 2, builder->CreateString("test_weight_tensor_3"), 0, false /* is_variable */), // Op 3 output: CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_output_tensor_3"), 0, false /* is_variable */), }; constexpr size_t operators_size = 3; Offset operators[operators_size]; { // Set Op 1 attributes: constexpr size_t operator_inputs_size = 3; const int32_t operator_inputs[operator_inputs_size] = {0, 1, 2}; constexpr size_t operator_outputs_size = 1; const int32_t operator_outputs[operator_outputs_size] = {3}; operators[0] = {CreateOperator( *builder, 0, builder->CreateVector(operator_inputs, operator_inputs_size), builder->CreateVector(operator_outputs, operator_outputs_size), BuiltinOptions_NONE)}; } { // Set Op 2 attributes constexpr size_t operator_inputs_size = 3; const int32_t operator_inputs[operator_inputs_size] = {3, 4, 5}; constexpr size_t operator_outputs_size = 1; const int32_t operator_outputs[operator_outputs_size] = {6}; operators[1] = {CreateOperator( *builder, 0, builder->CreateVector(operator_inputs, operator_inputs_size), builder->CreateVector(operator_outputs, operator_outputs_size), BuiltinOptions_NONE)}; } { // Set Op 3 attributes constexpr size_t operator_inputs_size = 3; const int32_t operator_inputs[operator_inputs_size] = {6, 7, 8}; constexpr size_t operator_outputs_size = 1; const int32_t operator_outputs[operator_outputs_size] = {9}; operators[2] = {CreateOperator( *builder, 0, builder->CreateVector(operator_inputs, operator_inputs_size), builder->CreateVector(operator_outputs, operator_outputs_size), BuiltinOptions_NONE)}; } constexpr size_t inputs_size = 1; const int32_t inputs[inputs_size] = {0}; constexpr size_t outputs_size = 1; const int32_t outputs[outputs_size] = {9}; constexpr size_t subgraphs_size = 1; const Offset subgraphs[subgraphs_size] = { CreateSubGraph(*builder, builder->CreateVector(tensors, tensors_size), builder->CreateVector(inputs, inputs_size), builder->CreateVector(outputs, outputs_size), builder->CreateVector(operators, operators_size), builder->CreateString("test_subgraph"))}; constexpr size_t operator_codes_size = 1; const Offset operator_codes[operator_codes_size] = { CreateOperatorCodeDirect(*builder, BuiltinOperator_CUSTOM, "mock_custom", 0)}; const Offset model_offset = CreateModel( *builder, 0, builder->CreateVector(operator_codes, operator_codes_size), builder->CreateVector(subgraphs, subgraphs_size), builder->CreateString("test_model"), builder->CreateVector(buffers, buffers_size)); FinishModelBuffer(*builder, model_offset); void* model_pointer = builder->GetBufferPointer(); const Model* model = flatbuffers::GetRoot(model_pointer); return model; } } // namespace const Model* GetSimpleMockModel() { static Model* model = nullptr; if (!model) { model = const_cast(BuildSimpleMockModel()); } return model; } const Model* GetComplexMockModel() { static Model* model = nullptr; if (!model) { model = const_cast(BuildComplexMockModel()); } return model; } const Model* GetSimpleModelWithBranch() { static Model* model = nullptr; if (!model) { model = const_cast(BuildSimpleModelWithBranch()); } return model; } const Model* GetSimpleStatefulModel() { static Model* model = nullptr; if (!model) { model = const_cast(BuildSimpleStatefulModel()); } return model; } const Tensor* Create1dFlatbufferTensor(int size, bool is_variable) { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); constexpr size_t tensor_shape_size = 1; const int32_t tensor_shape[tensor_shape_size] = {size}; const Offset tensor_offset = CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_tensor"), 0, is_variable); builder->Finish(tensor_offset); void* tensor_pointer = builder->GetBufferPointer(); const Tensor* tensor = flatbuffers::GetRoot(tensor_pointer); return tensor; } const Tensor* CreateQuantizedFlatbufferTensor(int size) { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); const Offset quant_params = CreateQuantizationParameters( *builder, /*min=*/builder->CreateVector({0.1f}), /*max=*/builder->CreateVector({0.2f}), /*scale=*/builder->CreateVector({0.3f}), /*zero_point=*/builder->CreateVector({100ll})); constexpr size_t tensor_shape_size = 1; const int32_t tensor_shape[tensor_shape_size] = {size}; const Offset tensor_offset = CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params, false); builder->Finish(tensor_offset); void* tensor_pointer = builder->GetBufferPointer(); const Tensor* tensor = flatbuffers::GetRoot(tensor_pointer); return tensor; } const Tensor* CreateMissingQuantizationFlatbufferTensor(int size) { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); const Offset quant_params = CreateQuantizationParameters(*builder, 0, 0, 0, 0, QuantizationDetails_NONE, 0, 0); constexpr size_t tensor_shape_size = 1; const int32_t tensor_shape[tensor_shape_size] = {size}; const Offset tensor_offset = CreateTensor( *builder, builder->CreateVector(tensor_shape, tensor_shape_size), TensorType_INT32, 0, builder->CreateString("test_tensor"), quant_params, false); builder->Finish(tensor_offset); void* tensor_pointer = builder->GetBufferPointer(); const Tensor* tensor = flatbuffers::GetRoot(tensor_pointer); return tensor; } const flatbuffers::Vector>* CreateFlatbufferBuffers() { using flatbuffers::Offset; flatbuffers::FlatBufferBuilder* builder = BuilderInstance(); constexpr size_t buffers_size = 1; const Offset buffers[buffers_size] = { CreateBuffer(*builder), }; const flatbuffers::Offset>> buffers_offset = builder->CreateVector(buffers, buffers_size); builder->Finish(buffers_offset); void* buffers_pointer = builder->GetBufferPointer(); const flatbuffers::Vector>* result = flatbuffers::GetRoot>>( buffers_pointer); return result; } int TestStrcmp(const char* a, const char* b) { if ((a == nullptr) || (b == nullptr)) { return -1; } while ((*a != 0) && (*a == *b)) { a++; b++; } return *reinterpret_cast(a) - *reinterpret_cast(b); } // Wrapper to forward kernel errors to the interpreter's error reporter. void ReportOpError(struct TfLiteContext* context, const char* format, ...) { ErrorReporter* error_reporter = static_cast(context->impl_); va_list args; va_start(args, format); TF_LITE_REPORT_ERROR(error_reporter, format, args); va_end(args); } // Create a TfLiteIntArray from an array of ints. The first element in the // supplied array must be the size of the array expressed as an int. TfLiteIntArray* IntArrayFromInts(const int* int_array) { return const_cast( reinterpret_cast(int_array)); } // Create a TfLiteFloatArray from an array of floats. The first element in the // supplied array must be the size of the array expressed as a float. TfLiteFloatArray* FloatArrayFromFloats(const float* floats) { static_assert(sizeof(float) == sizeof(int), "assumes sizeof(float) == sizeof(int) to perform casting"); int size = static_cast(floats[0]); *reinterpret_cast(const_cast(floats)) = size; return reinterpret_cast(const_cast(floats)); } TfLiteTensor CreateTensor(TfLiteIntArray* dims, const char* name, bool is_variable) { TfLiteTensor result; result.dims = dims; result.name = name; result.params = {}; result.quantization = {kTfLiteNoQuantization, nullptr}; result.is_variable = is_variable; result.allocation_type = kTfLiteMemNone; result.allocation = nullptr; return result; } TfLiteTensor CreateFloatTensor(const float* data, TfLiteIntArray* dims, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteFloat32; result.data.f = const_cast(data); result.bytes = ElementCount(*dims) * sizeof(float); return result; } void PopulateFloatTensor(TfLiteTensor* tensor, float* begin, float* end) { float* p = begin; float* v = tensor->data.f; while (p != end) { *v++ = *p++; } } TfLiteTensor CreateBoolTensor(const bool* data, TfLiteIntArray* dims, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteBool; result.data.b = const_cast(data); result.bytes = ElementCount(*dims) * sizeof(bool); return result; } TfLiteTensor CreateInt32Tensor(const int32_t* data, TfLiteIntArray* dims, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteInt32; result.data.i32 = const_cast(data); result.bytes = ElementCount(*dims) * sizeof(int32_t); return result; } TfLiteTensor CreateQuantizedTensor(const uint8_t* data, TfLiteIntArray* dims, float scale, int zero_point, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteUInt8; result.data.uint8 = const_cast(data); result.params = {scale, zero_point}; result.quantization = {kTfLiteAffineQuantization, nullptr}; result.bytes = ElementCount(*dims) * sizeof(uint8_t); return result; } TfLiteTensor CreateQuantizedTensor(const int8_t* data, TfLiteIntArray* dims, float scale, int zero_point, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteInt8; result.data.int8 = const_cast(data); result.params = {scale, zero_point}; result.quantization = {kTfLiteAffineQuantization, nullptr}; result.bytes = ElementCount(*dims) * sizeof(int8_t); return result; } TfLiteTensor CreateQuantizedTensor(const int16_t* data, TfLiteIntArray* dims, float scale, int zero_point, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteInt16; result.data.i16 = const_cast(data); result.params = {scale, zero_point}; result.quantization = {kTfLiteAffineQuantization, nullptr}; result.bytes = ElementCount(*dims) * sizeof(int16_t); return result; } TfLiteTensor CreateQuantized32Tensor(const int32_t* data, TfLiteIntArray* dims, float scale, const char* name, bool is_variable) { TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteInt32; result.data.i32 = const_cast(data); // Quantized int32 tensors always have a zero point of 0, since the range of // int32 values is large, and because zero point costs extra cycles during // processing. result.params = {scale, 0}; result.quantization = {kTfLiteAffineQuantization, nullptr}; result.bytes = ElementCount(*dims) * sizeof(int32_t); return result; } TfLiteTensor CreateQuantizedBiasTensor(const float* data, int32_t* quantized, TfLiteIntArray* dims, float input_scale, float weights_scale, const char* name, bool is_variable) { float bias_scale = input_scale * weights_scale; tflite::SymmetricQuantize(data, quantized, ElementCount(*dims), bias_scale); return CreateQuantized32Tensor(quantized, dims, bias_scale, name, is_variable); } // Quantizes int32 bias tensor with per-channel weights determined by input // scale multiplied by weight scale for each channel. TfLiteTensor CreatePerChannelQuantizedBiasTensor( const float* input, int32_t* quantized, TfLiteIntArray* dims, float input_scale, float* weight_scales, float* scales, int* zero_points, TfLiteAffineQuantization* affine_quant, int quantized_dimension, const char* name, bool is_variable) { int input_size = ElementCount(*dims); int num_channels = dims->data[quantized_dimension]; // First element is reserved for array length zero_points[0] = num_channels; scales[0] = static_cast(num_channels); float* scales_array = &scales[1]; for (int i = 0; i < num_channels; i++) { scales_array[i] = input_scale * weight_scales[i]; zero_points[i + 1] = 0; } SymmetricPerChannelQuantize(input, quantized, input_size, num_channels, scales_array); affine_quant->scale = FloatArrayFromFloats(scales); affine_quant->zero_point = IntArrayFromInts(zero_points); affine_quant->quantized_dimension = quantized_dimension; TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteInt32; result.data.i32 = const_cast(quantized); result.quantization = {kTfLiteAffineQuantization, affine_quant}; result.bytes = ElementCount(*dims) * sizeof(int32_t); return result; } TfLiteTensor CreateSymmetricPerChannelQuantizedTensor( const float* input, int8_t* quantized, TfLiteIntArray* dims, float* scales, int* zero_points, TfLiteAffineQuantization* affine_quant, int quantized_dimension, const char* name, bool is_variable) { int channel_count = dims->data[quantized_dimension]; scales[0] = static_cast(channel_count); zero_points[0] = channel_count; SignedSymmetricPerChannelQuantize(input, dims, quantized_dimension, quantized, &scales[1]); for (int i = 0; i < channel_count; i++) { zero_points[i + 1] = 0; } affine_quant->scale = FloatArrayFromFloats(scales); affine_quant->zero_point = IntArrayFromInts(zero_points); affine_quant->quantized_dimension = quantized_dimension; TfLiteTensor result = CreateTensor(dims, name, is_variable); result.type = kTfLiteInt8; result.data.int8 = const_cast(quantized); result.quantization = {kTfLiteAffineQuantization, affine_quant}; result.bytes = ElementCount(*dims) * sizeof(int8_t); return result; } } // namespace testing } // namespace tflite