| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/prelu.h"
- #include <cstdint>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/prelu.h"
- namespace tflite {
- void* PreluInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(PreluParams));
- }
- TfLiteStatus PreluEval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- const PreluParams& params =
- *(static_cast<const PreluParams*>(node->user_data));
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- const TfLiteEvalTensor* alpha = tflite::micro::GetEvalInput(context, node, 1);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- switch (input->type) {
- case kTfLiteFloat32: {
- BroadcastPrelu4DSlowFloat(tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(alpha),
- tflite::micro::GetTensorData<float>(alpha),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- } break;
- case kTfLiteInt8: {
- reference_ops::BroadcastPrelu4DSlow(
- params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(alpha),
- tflite::micro::GetTensorData<int8_t>(alpha),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- return kTfLiteOk;
- } break;
- default:
- TF_LITE_KERNEL_LOG(
- context, "Only float32 and uint8_t are supported currently, got %d.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- TfLiteRegistration Register_PRELU() {
- return {/*init=*/PreluInit,
- /*free=*/nullptr,
- /*prepare=*/PreluPrepare,
- /*invoke=*/PreluEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace tflite
|