| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- /* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/micro_allocation_info.h"
- #include "tensorflow/lite/c/c_api_types.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/micro/memory_helpers.h"
- #include "tensorflow/lite/micro/memory_planner/greedy_memory_planner.h"
- namespace tflite {
- namespace {
- constexpr char kOfflineMemAllocMetadata[] = "OfflineMemoryAllocation";
- constexpr int kUninitializedLifetime = -1;
- } // namespace
- // Mark the given Allocation info as first created at the specified allocation
- // scope count. Only the first creation must be recorded since the allocation
- // scope count monotonically increases throughout the lifetime marking process.
- void AllocationInfoBuilder::UpdateFirstCreated(AllocationInfo* current,
- int allocation_scope_count) {
- TFLITE_DCHECK(current->first_created <= allocation_scope_count);
- if (current->first_created == kUninitializedLifetime) {
- current->first_created = allocation_scope_count;
- }
- }
- // Mark the given AllocationInfo as last used at the specified allocation scope
- // count. Update the last used marker every time, since the allocation scope
- // count monotonically increases through the lifetime marking process.
- void AllocationInfoBuilder::UpdateLastUsed(AllocationInfo* current,
- int allocation_scope_count) {
- TFLITE_DCHECK(current->last_used <= allocation_scope_count);
- current->last_used = allocation_scope_count;
- }
- TfLiteStatus AllocationInfoBuilder::MarkSubgraphLifetimesIfNecessary(
- const Operator* op, internal::ScratchBufferRequest* scratch_buffer_requests,
- ScratchBufferHandle* scratch_buffer_handles,
- SubgraphAllocations* allocations) {
- int first_subgraph_index = -1;
- int second_subgraph_index = -1;
- const OperatorCode* opcode =
- model_->operator_codes()->Get(op->opcode_index());
- switch (opcode->builtin_code()) {
- case BuiltinOperator_IF: {
- first_subgraph_index =
- op->builtin_options_as_IfOptions()->then_subgraph_index();
- second_subgraph_index =
- op->builtin_options_as_IfOptions()->else_subgraph_index();
- break;
- }
- case BuiltinOperator_CALL_ONCE: {
- first_subgraph_index =
- op->builtin_options_as_CallOnceOptions()->init_subgraph_index();
- break;
- }
- case BuiltinOperator_WHILE: {
- first_subgraph_index =
- op->builtin_options_as_WhileOptions()->cond_subgraph_index();
- second_subgraph_index =
- op->builtin_options_as_WhileOptions()->body_subgraph_index();
- break;
- }
- default: {
- break;
- }
- }
- if (first_subgraph_index != -1) {
- // Enter a new allocation scope for each subgraph.
- allocation_scope_count_++;
- TF_LITE_ENSURE_STATUS(
- MarkAllocationLifetimes(first_subgraph_index, scratch_buffer_requests,
- scratch_buffer_handles, allocations));
- }
- if (second_subgraph_index != -1) {
- // Enter a new allocation scope for each subgraph.
- allocation_scope_count_++;
- TF_LITE_ENSURE_STATUS(
- MarkAllocationLifetimes(second_subgraph_index, scratch_buffer_requests,
- scratch_buffer_handles, allocations));
- }
- return kTfLiteOk;
- }
- TfLiteStatus AllocationInfoBuilder::CreateAllocationInfo(
- int scratch_buffer_request_count) {
- size_t subgraph_offsets_length = model_->subgraphs()->size() * sizeof(size_t);
- info_.subgraph_offsets =
- reinterpret_cast<size_t*>(non_persistent_allocator_->AllocateTemp(
- subgraph_offsets_length, alignof(size_t)));
- if (info_.subgraph_offsets == nullptr) {
- TF_LITE_REPORT_ERROR(
- reporter_,
- "Failed to allocate memory for memory planning, %d bytes required",
- subgraph_offsets_length);
- return kTfLiteError;
- }
- size_t tensor_count = 0;
- for (size_t subgraph_idx = 0; subgraph_idx < model_->subgraphs()->size();
- subgraph_idx++) {
- // Add all tensors in each subgraph to the AllocationInfo array. Even weight
- // tensors are added but marked with needs_allocating = false. Including all
- // tensors in the graph here simplifies logic.
- info_.subgraph_offsets[subgraph_idx] = tensor_count;
- tensor_count += model_->subgraphs()->Get(subgraph_idx)->tensors()->size();
- }
- info_.tensor_count = tensor_count;
- // Scratch buffer allocations follow tensor allocations, so the scratch offset
- // is equal to the number of tensor allocations.
- info_.scratch_offset = tensor_count;
- info_.allocation_info_count = tensor_count + scratch_buffer_request_count;
- info_.scratch_buffer_count = scratch_buffer_request_count;
- size_t bytes = sizeof(AllocationInfo) * info_.allocation_info_count;
- // Allocate an array of AllocationInfo structs from the temp section. This
- // struct will be used by AllocationInfoBuilder to find buffer usage.
- info_.allocation_info = reinterpret_cast<AllocationInfo*>(
- non_persistent_allocator_->AllocateTemp(bytes, alignof(AllocationInfo)));
- if (info_.allocation_info == nullptr) {
- TF_LITE_REPORT_ERROR(
- reporter_,
- "Failed to allocate memory for memory planning, %d bytes required",
- bytes);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus AllocationInfoBuilder::FreeAllocationInfo() {
- non_persistent_allocator_->DeallocateTemp(
- reinterpret_cast<uint8_t*>(info_.allocation_info));
- non_persistent_allocator_->DeallocateTemp(
- reinterpret_cast<uint8_t*>(info_.subgraph_offsets));
- return kTfLiteOk;
- }
- TfLiteStatus AllocationInfoBuilder::InitializeAllocationInfo(
- const int32_t* offline_offsets, SubgraphAllocations* allocations) {
- AllocationInfo* allocation_info = info_.allocation_info;
- // Initialize allocation info for every tensor in every subgraph.
- for (size_t subgraph_idx = 0; subgraph_idx < model_->subgraphs()->size();
- subgraph_idx++) {
- const SubGraph* subgraph = model_->subgraphs()->Get(subgraph_idx);
- TfLiteEvalTensor* eval_tensors = allocations[subgraph_idx].tensors;
- AllocationInfo* subgraph_allocation_info =
- &allocation_info[info_.subgraph_offsets[subgraph_idx]];
- for (size_t i = 0; i < subgraph->tensors()->size(); ++i) {
- AllocationInfo* current = &subgraph_allocation_info[i];
- current->output_ptr = &(eval_tensors[i].data.data);
- TF_LITE_ENSURE_STATUS(
- TfLiteEvalTensorByteLength(&eval_tensors[i], ¤t->bytes));
- current->first_created = kUninitializedLifetime;
- current->last_used = kUninitializedLifetime;
- current->needs_allocating = (eval_tensors[i].data.data == nullptr) &&
- (!subgraph->tensors()->Get(i)->is_variable());
- if (offline_offsets) {
- current->offline_offset = offline_offsets[i];
- } else {
- current->offline_offset = kOnlinePlannedBuffer;
- }
- }
- }
- // Initialize allocation info for every scratch buffer.
- AllocationInfo* scratch_allocation_info =
- &allocation_info[info_.scratch_offset];
- for (size_t i = 0; i < info_.scratch_buffer_count; i++) {
- AllocationInfo* current = &scratch_allocation_info[i];
- current->first_created = -1;
- current->last_used = -1;
- current->needs_allocating = true;
- current->offline_offset = kOnlinePlannedBuffer;
- }
- return kTfLiteOk;
- }
- TfLiteStatus AllocationInfoBuilder::MarkAllocationLifetimes(
- int subgraph_idx, internal::ScratchBufferRequest* scratch_buffer_requests,
- ScratchBufferHandle* scratch_buffer_handles,
- SubgraphAllocations* allocations) {
- const SubGraph* subgraph = model_->subgraphs()->Get(subgraph_idx);
- AllocationInfo* allocation_info = info_.allocation_info;
- // Each subgraph's tensor allocations are in a contiguous block starting at
- // subgraph_offsets_[subgraph index] with one entry per tensor.
- AllocationInfo* subgraph_allocation_info =
- &allocation_info[info_.subgraph_offsets[subgraph_idx]];
- uint32_t operators_size = NumSubgraphOperators(subgraph);
- // Mark all inputs as created at the start of the subgraph invocation.
- for (size_t i = 0;
- subgraph->inputs() != nullptr && i < subgraph->inputs()->size(); ++i) {
- const int tensor_index = subgraph->inputs()->Get(i);
- AllocationInfo* current = &subgraph_allocation_info[tensor_index];
- UpdateFirstCreated(current, allocation_scope_count_);
- }
- for (uint32_t i = 0; i < operators_size; i++) {
- // Each operator has a new allocation scope.
- allocation_scope_count_++;
- const auto* op = subgraph->operators()->Get(i);
- // Figure out when the first creation and use of each tensor is.
- for (size_t n = 0; op->outputs() != nullptr && n < op->outputs()->size();
- ++n) {
- const int tensor_index = op->outputs()->Get(n);
- AllocationInfo* current = &subgraph_allocation_info[tensor_index];
- UpdateFirstCreated(current, allocation_scope_count_);
- }
- // Keep track of scope count before any subgraphs, so that scratch buffers'
- // lifetime within a control flow op properly overlaps with all subgraphs.
- int start_allocation_scope_count = allocation_scope_count_;
- // Control flow operators can invoke subgraphs. Plan these subgraphs
- // before continuing on to the rest of the graph.
- MarkSubgraphLifetimesIfNecessary(op, scratch_buffer_requests,
- scratch_buffer_handles, allocations);
- // Figure out when the last use of each tensor is.
- for (size_t n = 0; op->inputs() != nullptr && n < op->inputs()->size();
- ++n) {
- const int tensor_index = op->inputs()->Get(n);
- // Optional bias tensors can have an index of -1 when they are omitted.
- if (tensor_index >= 0) {
- AllocationInfo* current = &subgraph_allocation_info[tensor_index];
- // No need to update creation since it is either marked by the subgraph
- // or producer op, or it is not part of the memory plan (weight, bias
- // tensor).
- UpdateLastUsed(current, allocation_scope_count_);
- }
- }
- for (size_t n = 0; op->outputs() != nullptr && n < op->outputs()->size();
- ++n) {
- const int tensor_index = op->outputs()->Get(n);
- AllocationInfo* current = &subgraph_allocation_info[tensor_index];
- UpdateLastUsed(current, allocation_scope_count_);
- }
- // Mark thse lifetime of scratch buffers belonging to the current node. This
- // operation is O(N * M) where N is the total number of visited nodes and M
- // is the total number of scratch buffers.
- // TODO(b/217794030): Optimize this memory planning code.
- AllocationInfo* scratch_allocation_info =
- &allocation_info[info_.scratch_offset];
- for (size_t scratch_idx = 0; scratch_idx < info_.scratch_buffer_count;
- scratch_idx++) {
- internal::ScratchBufferRequest request =
- scratch_buffer_requests[scratch_idx];
- AllocationInfo* current = &scratch_allocation_info[scratch_idx];
- if (request.node_idx == static_cast<int>(i) &&
- request.subgraph_idx == static_cast<int>(subgraph_idx)) {
- ScratchBufferHandle* current_handle =
- &(scratch_buffer_handles[scratch_idx]);
- current->output_ptr = reinterpret_cast<void**>(¤t_handle->data);
- current->bytes = request.bytes;
- UpdateFirstCreated(current, start_allocation_scope_count);
- UpdateLastUsed(current, allocation_scope_count_);
- }
- }
- }
- // Mark all outputs as persistent to the end of the subgraph invocation.
- for (size_t i = 0;
- subgraph->outputs() != nullptr && i < subgraph->outputs()->size(); ++i) {
- const int tensor_index = subgraph->outputs()->Get(i);
- AllocationInfo* current = &subgraph_allocation_info[tensor_index];
- UpdateLastUsed(current, allocation_scope_count_);
- }
- return kTfLiteOk;
- }
- // Get offline tensors allocation plan. See
- // micro/docs/memory_management.md for more info.
- TfLiteStatus AllocationInfoBuilder::GetOfflinePlannedOffsets(
- const int32_t** offline_planner_offsets) {
- if (model_->metadata()) {
- for (size_t i = 0; i < model_->metadata()->size(); ++i) {
- auto metadata = model_->metadata()->Get(i);
- if (strncmp(metadata->name()->c_str(), kOfflineMemAllocMetadata,
- strlen(kOfflineMemAllocMetadata)) == 0) {
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers =
- model_->buffers();
- auto* buffer = (*buffers)[metadata->buffer()];
- auto* array = buffer->data();
- const uint32_t* metadata_buffer =
- reinterpret_cast<const uint32_t*>(array->data());
- const size_t nbr_tensors = static_cast<size_t>(metadata_buffer[2]);
- *offline_planner_offsets =
- reinterpret_cast<const int32_t*>(&metadata_buffer[3]);
- if (info_.tensor_count != nbr_tensors) {
- TF_LITE_REPORT_ERROR(reporter_,
- "Nbr of offline buffer offsets (%d) in metadata "
- "not equal nbr tensors (%d)\n",
- nbr_tensors, info_.tensor_count);
- return kTfLiteError;
- }
- }
- }
- }
- return kTfLiteOk;
- }
- } // namespace tflite
|