| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/add_n.h"
- #include <cstdint>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- constexpr int kInputTensor0 = 0;
- constexpr int kOutputTensor = 0;
- constexpr int kAddNIntegerShift = 20;
- // only used with INT8 tensors
- struct OpData {
- int32_t output_activation_min;
- int32_t output_activation_max;
- int32_t input_offset;
- int32_t output_offset;
- int32_t input_multiplier;
- int32_t output_multiplier;
- int input_shift;
- int output_shift;
- int left_shift;
- int scratch_index;
- };
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
- int num_inputs = NumInputs(node);
- TF_LITE_ENSURE(context, num_inputs >= 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input_tensor_first =
- micro_context->AllocateTempInputTensor(node, kInputTensor0);
- TF_LITE_ENSURE(context, input_tensor_first != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- // Check that all tensors have the same shape and type.
- TF_LITE_ENSURE_TYPES_EQ(context, output->type, input_tensor_first->type);
- for (int i = kInputTensor0 + 1; i < num_inputs; ++i) {
- TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, i);
- TF_LITE_ENSURE(context, input != nullptr);
- TF_LITE_ENSURE(context, HaveSameShapes(input_tensor_first, input));
- TF_LITE_ENSURE_TYPES_EQ(context, input_tensor_first->type, input->type);
- // Check that all INT8 input tensors have the same zero-point and scale.
- if (input_tensor_first->type == kTfLiteInt8) {
- TF_LITE_ENSURE(context, input_tensor_first->params.zero_point ==
- input->params.zero_point);
- TF_LITE_ENSURE(context,
- input_tensor_first->params.scale == input->params.scale);
- }
- micro_context->DeallocateTempTfLiteTensor(input);
- }
- if (output->type == kTfLiteFloat32) {
- // Allocate scratch buffer space for pointer to each tensor's data
- // and store the scratch buffer index in the node's user_data
- int scratch_index;
- size_t scratch_size = sizeof(float*) * num_inputs;
- TF_LITE_ENSURE_OK(context, context->RequestScratchBufferInArena(
- context, scratch_size, &scratch_index));
- node->user_data =
- reinterpret_cast<decltype(node->user_data)>(scratch_index);
- } else if (output->type == kTfLiteInt8) {
- node->user_data =
- context->AllocatePersistentBuffer(context, sizeof(OpData));
- OpData* data = static_cast<OpData*>(node->user_data);
- // Allocate scratch buffer space for pointer to each tensor's data
- // and store the scratch buffer index in OpData
- size_t scratch_size = sizeof(int8_t*) * num_inputs;
- TF_LITE_ENSURE_OK(
- context, context->RequestScratchBufferInArena(context, scratch_size,
- &data->scratch_index));
- // 8bit -> 8bit general quantized path, with general rescalings
- data->input_offset = -input_tensor_first->params.zero_point;
- data->output_offset = output->params.zero_point;
- data->left_shift = kAddNIntegerShift;
- const double twice_max_input_scale =
- 2 * static_cast<double>(input_tensor_first->params.scale);
- const double real_input_multiplier =
- static_cast<double>(input_tensor_first->params.scale) /
- twice_max_input_scale;
- const double real_output_multiplier =
- twice_max_input_scale /
- ((1 << data->left_shift) * static_cast<double>(output->params.scale));
- QuantizeMultiplierSmallerThanOneExp(
- real_input_multiplier, &data->input_multiplier, &data->input_shift);
- QuantizeMultiplierSmallerThanOneExp(
- real_output_multiplier, &data->output_multiplier, &data->output_shift);
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, kTfLiteActNone, output, &data->output_activation_min,
- &data->output_activation_max));
- } else {
- TF_LITE_KERNEL_LOG(context, "ADD_N only supports FLOAT32 and INT8, got %s.",
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- micro_context->DeallocateTempTfLiteTensor(input_tensor_first);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- return CalculateOpData(context, node);
- }
- template <typename T>
- inline const T** CopyInputsToScratchBuffer(TfLiteContext* context,
- TfLiteNode* node,
- const int scratch_index) {
- int num_inputs = NumInputs(node);
- void* scratch_buffer = context->GetScratchBuffer(context, scratch_index);
- const T** all_inputs = static_cast<decltype(all_inputs)>(scratch_buffer);
- for (int i = 0; i < num_inputs; i++) {
- const TfLiteEvalTensor* next_input =
- tflite::micro::GetEvalInput(context, node, kInputTensor0 + i);
- all_inputs[i] = tflite::micro::GetTensorData<T>(next_input);
- }
- return all_inputs;
- }
- template <typename T>
- void EvalAddN(TfLiteContext* context, TfLiteNode* node,
- TfLiteEvalTensor* output) {
- int num_inputs = NumInputs(node);
- int scratch_index =
- static_cast<int>(reinterpret_cast<intptr_t>(node->user_data));
- const T** all_inputs =
- CopyInputsToScratchBuffer<T>(context, node, scratch_index);
- reference_ops::AddN<T>(tflite::micro::GetTensorShape(output), num_inputs,
- all_inputs, tflite::micro::GetTensorData<T>(output));
- }
- template <typename T>
- void EvalAddNQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLiteEvalTensor* output) {
- int num_inputs = NumInputs(node);
- OpData* data = static_cast<OpData*>(node->user_data);
- const T** all_inputs =
- CopyInputsToScratchBuffer<T>(context, node, data->scratch_index);
- ArithmeticParams params;
- params.left_shift = data->left_shift;
- params.input1_offset = data->input_offset;
- params.input1_multiplier = data->input_multiplier;
- params.input1_shift = data->input_shift;
- params.output_offset = data->output_offset;
- params.output_multiplier = data->output_multiplier;
- params.output_shift = data->output_shift;
- SetActivationParams(data->output_activation_min, data->output_activation_max,
- ¶ms);
- reference_ops::AddN(params, tflite::micro::GetTensorShape(output), num_inputs,
- all_inputs, tflite::micro::GetTensorData<T>(output));
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- if (output->type == kTfLiteFloat32) {
- EvalAddN<float>(context, node, output);
- } else if (output->type == kTfLiteInt8) {
- EvalAddNQuantized<int8_t>(context, node, output);
- } else {
- TF_LITE_KERNEL_LOG(context, "ADD_N only supports FLOAT32 and INT8, got %s.",
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_ADD_N() {
- return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
- }
- } // namespace tflite
|