| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- /* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/broadcast_to.h"
- #include <stdint.h>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_context.h"
- namespace tflite {
- namespace {
- constexpr int kInputTensor = 0;
- constexpr int kShapeTensor = 1;
- constexpr int kOutputTensor = 0;
- // Support a maximum of 5 dimensions in TFLM.
- constexpr int kMaxDims = 5;
- TfLiteStatus ValidateOutputTensor(TfLiteContext* context, TfLiteTensor* input,
- TfLiteTensor* shape, TfLiteTensor* output) {
- // Ensures the shape is 1D tensor.
- TF_LITE_ENSURE_EQ(context, NumDimensions(shape), 1);
- // Ensure output dims is not less than input dims.
- int input_num_dims = NumDimensions(input);
- int output_num_dims = NumDimensions(output);
- int shape_num_dims = SizeOfDimension(shape, 0);
- TF_LITE_ENSURE_MSG(context, output_num_dims == shape_num_dims,
- "Output must match with the expected shape dimension.");
- TF_LITE_ENSURE_MSG(context, input_num_dims <= output_num_dims,
- "Output shape must be broadcastable from input shape.");
- TF_LITE_ENSURE_MSG(context, output_num_dims <= kMaxDims,
- "BroadcastTo only supports 1-5D tensor.");
- // Check if output shape is broadcastable from input shape.
- auto get_shape_data = [shape](int i) -> int32_t {
- if (shape->type == kTfLiteInt32) {
- return GetTensorData<int32_t>(shape)[i];
- } else {
- return GetTensorData<int64_t>(shape)[i];
- }
- };
- int extending_dims = output_num_dims - input_num_dims;
- for (int idx = 0; idx < input_num_dims; ++idx) {
- TF_LITE_ENSURE_MSG(
- context,
- (SizeOfDimension(input, idx) == 1 ||
- SizeOfDimension(input, idx) == get_shape_data(extending_dims + idx)),
- "Output shape must be broadcastable from input shape.");
- }
- // Validating the shape of the output tensor.
- tflite::RuntimeShape output_shape = tflite::GetTensorShape(output);
- for (int idx = 0; idx < output_num_dims; ++idx) {
- TF_LITE_ENSURE(context, output_shape.Dims(idx) == get_shape_data(idx));
- }
- return kTfLiteOk;
- }
- TfLiteStatus BroadcastToPrepare(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE(context, NumInputs(node) == 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input =
- micro_context->AllocateTempInputTensor(node, kInputTensor);
- TfLiteTensor* shape =
- micro_context->AllocateTempInputTensor(node, kShapeTensor);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE_MSG(context, (NumDimensions(input) <= kMaxDims),
- "BroadcastTo only supports 1-5D tensor.");
- TF_LITE_ENSURE(context,
- shape->type == kTfLiteInt32 || shape->type == kTfLiteInt64);
- TF_LITE_ENSURE_EQ(context, input->type, output->type);
- // Does not support String type due to its variable size. This limitation is
- // the same as TFLite.
- TF_LITE_ENSURE(context, input->type != kTfLiteString);
- TF_LITE_ENSURE_STATUS(ValidateOutputTensor(context, input, shape, output));
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(shape);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus BroadcastToEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output = micro::GetEvalOutput(context, node, kOutputTensor);
- // BroadcastTo op support upto 5 dims, different from 8 dims in TFLite.
- reference_ops::BroadcastTo<kMaxDims>(
- micro::GetTensorShape(input), input->data.raw,
- micro::GetTensorShape(output), output->data.raw, input->type);
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_BROADCAST_TO() {
- return tflite::micro::RegisterOp(nullptr, BroadcastToPrepare,
- BroadcastToEval);
- }
- } // namespace tflite
|