| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/elu.h"
- #include <algorithm>
- #include <limits>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/cppmath.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- namespace tflite {
- namespace {
- // Input/output tensor index.
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- // OLD-TODO(b/142762739): We should figure out a multi-threading plan for most
- // of the activation ops below.
- struct OpData {
- int8_t table[256];
- };
- using TransformFunc = float (*)(float);
- template <typename T>
- void PopulateLookupTable(const TfLiteTensor* input, const TfLiteTensor* output,
- const TransformFunc transform, OpData* data) {
- if (sizeof(T) != 1) {
- MicroPrintf("Lookup table valid only for 8bit");
- TFLITE_ABORT;
- }
- const float inverse_scale = 1 / output->params.scale;
- int32_t maxval = std::numeric_limits<T>::max();
- int32_t minval = std::numeric_limits<T>::min();
- for (int32_t val = minval; val <= maxval; ++val) {
- const float dequantized =
- input->params.scale * (val - input->params.zero_point);
- const float transformed = transform(dequantized);
- const float rescaled = TfLiteRound(transformed * inverse_scale);
- const int32_t quantized =
- static_cast<int32_t>(rescaled + output->params.zero_point);
- data->table[static_cast<uint8_t>(static_cast<T>(val))] =
- static_cast<T>(std::max(std::min(maxval, quantized), minval));
- }
- }
- // OLD-TODO(b/143696793): move this to optimized_ops.
- void EvalUsingLookupTable(const OpData* data, const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- const int size = MatchingFlatSize(tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorShape(output));
- int8_t* output_data = tflite::micro::GetTensorData<int8_t>(output);
- const int8_t* input_data = tflite::micro::GetTensorData<int8_t>(input);
- for (int i = 0; i < size; ++i) {
- output_data[i] = data->table[static_cast<uint8_t>(input_data[i])];
- }
- }
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
- MicroContext* micro_context = GetMicroContext(context);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- TfLiteTensor* input =
- micro_context->AllocateTempInputTensor(node, kInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- // Use LUT to handle quantized elu path.
- if (input->type == kTfLiteInt8) {
- OpData* data = static_cast<OpData*>(node->user_data);
- TransformFunc transform = [](float value) {
- return value < 0.0f ? std::exp(value) - 1.0f : value;
- };
- PopulateLookupTable<int8_t>(input, output, transform, data);
- }
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- void* EluInit(TfLiteContext* context, const char* buffer, size_t length) {
- // This is a builtin op, so we don't use the contents in 'buffer', if any.
- // Instead, we allocate a new object to carry information from Prepare() to
- // Eval().
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus EluPrepare(TfLiteContext* context, TfLiteNode* node) {
- return CalculateOpData(context, node);
- }
- TfLiteStatus EluEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32: {
- reference_ops::Elu(tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- }
- case kTfLiteInt8: {
- const OpData* data = static_cast<OpData*>(node->user_data);
- EvalUsingLookupTable(data, input, output);
- return kTfLiteOk;
- }
- default:
- TF_LITE_KERNEL_LOG(
- context, "ELU only supports float32 and int8 currently, got %s.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- } // namespace
- TfLiteRegistration Register_ELU() {
- return tflite::micro::RegisterOp(EluInit, EluPrepare, EluEval);
- }
- } // namespace tflite
|