| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/log_softmax.h"
- #include <cstddef>
- #include <cstdint>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- // used only with quantized data
- struct LogSoftmaxOpData {
- int32_t input_multiplier;
- int32_t input_left_shift;
- int32_t reverse_scaling_divisor;
- int32_t reverse_scaling_right_shift;
- int diff_min;
- size_t outer_size; // number of tensor elements skipping computation axis
- size_t depth; // number of tensor elements on computation axis
- };
- // input/output tensor index
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
- MicroContext* micro_context = GetMicroContext(context);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- TfLiteTensor* input =
- micro_context->AllocateTempInputTensor(node, kInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- TF_LITE_ENSURE(context, HaveSameShapes(input, output));
- if (input->type == kTfLiteInt8) {
- node->user_data =
- context->AllocatePersistentBuffer(context, sizeof(LogSoftmaxOpData));
- auto data = static_cast<LogSoftmaxOpData*>(node->user_data);
- // quantization datum
- constexpr int32_t kOutputZeroPoint = 127;
- constexpr float kOutputScale = 16.0 / 256;
- constexpr double kBeta = 1.0;
- constexpr int kScaledDiffIntegerBits = 5;
- TF_LITE_ENSURE(context, output->params.scale == kOutputScale);
- TF_LITE_ENSURE(context, output->params.zero_point == kOutputZeroPoint);
- int input_left_shift;
- int reverse_scaling_right_shift;
- tflite::PreprocessLogSoftmaxScalingExp(
- kBeta, static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
- &data->input_multiplier, &input_left_shift,
- &data->reverse_scaling_divisor, &reverse_scaling_right_shift);
- data->input_left_shift = static_cast<int32_t>(input_left_shift);
- data->reverse_scaling_right_shift =
- static_cast<int32_t>(-reverse_scaling_right_shift);
- // diff_min has a negative value, and is used to limit the maximum magnitude
- // of the diffs, which are <= 0.
- data->diff_min =
- -tflite::CalculateInputRadius(kScaledDiffIntegerBits, input_left_shift);
- RuntimeShape input_shape = GetTensorShape(input);
- const int trailing_dim = input_shape.DimensionsCount() - 1;
- data->outer_size =
- static_cast<size_t>(FlatSizeSkipDim(input_shape, trailing_dim));
- data->depth = static_cast<size_t>(input_shape.Dims(trailing_dim));
- }
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus LogSoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
- return CalculateOpData(context, node);
- }
- TfLiteStatus LogSoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
- const LogSoftmaxOpData* data =
- static_cast<LogSoftmaxOpData*>(node->user_data);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32: {
- SoftmaxParams op_params = {};
- reference_ops::LogSoftmax(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- }
- case kTfLiteInt8: {
- SoftmaxParams op_params = {};
- op_params.input_multiplier = data->input_multiplier;
- op_params.input_left_shift = data->input_left_shift;
- op_params.reverse_scaling_divisor = data->reverse_scaling_divisor;
- op_params.reverse_scaling_right_shift = data->reverse_scaling_right_shift;
- op_params.diff_min = data->diff_min;
- reference_ops::LogSoftmax(op_params, data->outer_size, data->depth,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- return kTfLiteOk;
- }
- default:
- TF_LITE_KERNEL_LOG(context,
- "LOG_SOFTMAX only supports float32, int8, got %s.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- } // namespace
- TfLiteRegistration Register_LOG_SOFTMAX() {
- return tflite::micro::RegisterOp(nullptr, LogSoftmaxPrepare, LogSoftmaxEval);
- }
- } // namespace tflite
|