| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/kernels/lstm_eval.h"
- #include <cmath>
- #include <cstdint>
- #include <cstring>
- #include <memory>
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/micro_tensor_utils.h"
- namespace tflite {
- namespace {
- void ComputeRowSums(
- int32_t* input_to_input_row_sums, int32_t* input_to_forget_row_sums,
- int32_t* input_to_cell_row_sums, int32_t* input_to_output_row_sums,
- int32_t* aux_input_to_input_row_sums, int32_t* aux_input_to_forget_row_sums,
- int32_t* aux_input_to_cell_row_sums, int32_t* aux_input_to_output_row_sums,
- int32_t* recurrent_to_input_row_sums, int32_t* recurrent_to_forget_row_sums,
- int32_t* recurrent_to_cell_row_sums, int32_t* recurrent_to_output_row_sums,
- int32_t* projection_weights_row_sums, int32_t* row_sums, int n_cell,
- int n_input, int n_aux_input, int n_output,
- const int8_t* input_to_input_weights_ptr,
- const int8_t* input_to_forget_weights_ptr,
- const int8_t* input_to_cell_weights_ptr,
- const int8_t* input_to_output_weights_ptr,
- const int8_t* aux_input_to_input_weights_ptr,
- const int8_t* aux_input_to_forget_weights_ptr,
- const int8_t* aux_input_to_cell_weights_ptr,
- const int8_t* aux_input_to_output_weights_ptr,
- const int8_t* recurrent_to_input_weights_ptr,
- const int8_t* recurrent_to_forget_weights_ptr,
- const int8_t* recurrent_to_cell_weights_ptr,
- const int8_t* recurrent_to_output_weights_ptr,
- const int8_t* projection_weights_ptr, bool use_cifg,
- const float* aux_input_ptr) {
- // Compute the row sums for dequantization
- if (!use_cifg) {
- micro_tensor_utils::ReductionSumVector(
- input_to_input_weights_ptr, input_to_input_row_sums, n_cell, n_input);
- }
- micro_tensor_utils::ReductionSumVector(
- input_to_forget_weights_ptr, input_to_forget_row_sums, n_cell, n_input);
- micro_tensor_utils::ReductionSumVector(
- input_to_cell_weights_ptr, input_to_cell_row_sums, n_cell, n_input);
- micro_tensor_utils::ReductionSumVector(
- input_to_output_weights_ptr, input_to_output_row_sums, n_cell, n_input);
- if (aux_input_ptr) {
- if (!use_cifg) {
- micro_tensor_utils::ReductionSumVector(aux_input_to_input_weights_ptr,
- aux_input_to_input_row_sums,
- n_cell, n_aux_input);
- }
- micro_tensor_utils::ReductionSumVector(aux_input_to_forget_weights_ptr,
- aux_input_to_forget_row_sums, n_cell,
- n_aux_input);
- micro_tensor_utils::ReductionSumVector(aux_input_to_cell_weights_ptr,
- aux_input_to_cell_row_sums, n_cell,
- n_aux_input);
- micro_tensor_utils::ReductionSumVector(aux_input_to_output_weights_ptr,
- aux_input_to_output_row_sums, n_cell,
- n_aux_input);
- }
- if (!use_cifg) {
- micro_tensor_utils::ReductionSumVector(recurrent_to_input_weights_ptr,
- recurrent_to_input_row_sums, n_cell,
- n_output);
- }
- micro_tensor_utils::ReductionSumVector(recurrent_to_forget_weights_ptr,
- recurrent_to_forget_row_sums, n_cell,
- n_output);
- micro_tensor_utils::ReductionSumVector(recurrent_to_cell_weights_ptr,
- recurrent_to_cell_row_sums, n_cell,
- n_output);
- micro_tensor_utils::ReductionSumVector(recurrent_to_output_weights_ptr,
- recurrent_to_output_row_sums, n_cell,
- n_output);
- if (projection_weights_ptr != nullptr) {
- micro_tensor_utils::ReductionSumVector(
- projection_weights_ptr, projection_weights_row_sums, n_output, n_cell);
- }
- }
- // Calculates a single LSTM gate.
- //
- // Implements the following formula: (* is matrix multiply)
- // gate = activate(W_input * input + W_aux * aux_input +
- // W_peephole * cell + W_recurrent * prev_output + bias)
- // with layer norm:
- // gate = activate(W_norm * normalize(...) + bias) // not adding bias inside
- //
- // Activation is sigmoid except for the "cell" gate (configurable, usually tanh)
- //
- // Parameters:
- // Input vectors (to LSTM): | Size: | Optional?
- // input | n_input |
- // aux_input | n_aux_input | y (bidir LSTM)
- // Input vectors (persistent states):
- // output_state | n_output |
- // cell_state | n_cell |
- // 'Constant' inputs:
- // input_to_gate_weights | n_cell * n_input |
- // aux_input_to_gate_weights | n_cell * n_aux_input | y (bidir LSTM)
- // recurrent_to_gate_weights | n_cell * n_output |
- // cell_to_gate_weights | n_cell | y (peephole)
- // gate_bias | n_cell |
- // layer_norm_coefficients | n_cell | y (layer norm)
- // Output vector:
- // gate | n_cell |
- // Scalar parameters:
- // n_batch - batch size / number of vectors
- // n_input, n_aux_input, n_output, n_cell - size of vectors.
- // activation - activation to use.
- // is_input_all_zeros, is_aux_input_all_zeros - if input vectors are all zero.
- // use_layer_norm - if doing layer norm LSTM.
- inline void CalculateLstmGateFloat(
- const float* input, const float* input_to_gate_weights,
- const float* aux_input, const float* aux_input_to_gate_weights,
- const float* output_state, const float* recurrent_to_gate_weights,
- const float* cell_state, const float* cell_to_gate_weights,
- const float* layer_norm_coefficients, const float* gate_bias,
- const int n_batch, const int n_input, const int n_aux_input,
- const int n_output, const int n_cell,
- const TfLiteFusedActivation activation, float* gate,
- const bool is_input_all_zeros, const bool is_aux_input_all_zeros) {
- const bool use_peephole = (cell_to_gate_weights != nullptr);
- const bool use_layer_norm = (layer_norm_coefficients != nullptr);
- // Initialize scratch buffers with bias for regular lstm or initialize with
- // zero for layer norm lstm.
- if (use_layer_norm) {
- memset(gate, 0, n_cell * n_batch * sizeof(float));
- } else {
- micro_tensor_utils::VectorBatchVectorAssign(gate_bias, n_cell, n_batch,
- gate);
- }
- // For each batch and cell: compute input_weight * input.
- // Skip if input is all zeros.
- if (!is_input_all_zeros) {
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- input_to_gate_weights, n_cell, n_input, input, n_batch, gate);
- }
- // For each batch and cell: compute aux_input_weight * aux_input.
- // Skip if auxiliary input is not available or all zeros.
- if (!is_aux_input_all_zeros) {
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- aux_input_to_gate_weights, n_cell, n_aux_input, aux_input, n_batch,
- gate);
- }
- // For each batch and cell: compute recurrent_weight * output_state.
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- recurrent_to_gate_weights, n_cell, n_output, output_state, n_batch, gate);
- // For each batch and cell: compute cell_weight .* cell_state (peephole LSTM)
- if (use_peephole) {
- micro_tensor_utils::VectorBatchVectorCwiseProductAccumulate(
- cell_to_gate_weights, n_cell, cell_state, n_batch, gate);
- }
- // Do layer normalization (if layer norm LSTM)
- if (use_layer_norm) {
- micro_tensor_utils::MeanStddevNormalization(gate, gate, n_cell, n_batch);
- micro_tensor_utils::VectorBatchVectorCwiseProduct(
- layer_norm_coefficients, n_cell, gate, n_batch, gate);
- micro_tensor_utils::VectorBatchVectorAdd(gate_bias, n_cell, n_batch, gate);
- }
- // Apply activation
- micro_tensor_utils::ApplyActivationToVector(gate, n_batch * n_cell,
- activation, gate);
- }
- // Updates the LSTM cell state, used by both float and hybrid LSTM versions.
- //
- // Implements the following formula:
- // cell_state_new = clip(forget_gate * cell_state + input_gate * cell_gate)
- //
- // With CIFG LSTM, input gate is replaced by (1-forget_gate).
- //
- // Parameters:
- // - n_batch, n_cell: sizes of vectors
- // - cell_state: input/output vector, size n_batch*n_cell
- // - input_gate: input vector, size n_batch*n_cell.
- // - forget_gate: input/scratch vector, size n_batch*n_cell, modified with CIFG
- // - cell_gate: input vector, size n_batch*n_cell.
- // - use_cifg: use 1-forget_gate instead of input_gate.
- // - clip: if > 0, clip the resulting cell state to [-clip, +clip].
- void UpdateLstmCellFloat(int n_batch, int n_cell, float* cell_state,
- const float* input_gate, float* forget_gate,
- const float* cell_gate, bool use_cifg, float clip) {
- micro_tensor_utils::VectorVectorCwiseProduct(forget_gate, cell_state,
- n_batch * n_cell, cell_state);
- if (use_cifg) {
- // With CIFG, input_gate = 1-forget_gate. Use the forget_gate array as
- // scratch, as input_gate array is not allocated in this case. (Be careful
- // not to write to the scratch before reading the forget gate data.)
- float* scratch = forget_gate;
- micro_tensor_utils::Sub1Vector(forget_gate, n_batch * n_cell, scratch);
- micro_tensor_utils::VectorVectorCwiseProductAccumulate(
- cell_gate, scratch, n_batch * n_cell, cell_state);
- } else {
- micro_tensor_utils::VectorVectorCwiseProductAccumulate(
- cell_gate, input_gate, n_batch * n_cell, cell_state);
- }
- if (clip > 0.0f) {
- micro_tensor_utils::CwiseClipping(cell_state, n_batch * n_cell, clip);
- }
- }
- // Calculates the output state tensor of an LSTM step.
- //
- // Implements the following formula:
- // output_no_projection = output_gate .* activate(cell_state)
- // (elementwise vector product)
- // If no projection is used:
- // output = output_state = output_no_projection
- // With projection:
- // output = output_state = clip(W*output_no_projection + bias)
- //
- // Output might not have a different 'stride' than n_batch, so we need to copy.
- //
- // Parameters:
- // - n_batch: batches: the number of distinct vectors in each array.
- // - n_cell, n_output: sizes of vectors.
- // - cell_state, output_gate: input vectors, size n_batch*n_cell.
- // - projection_weights, projection_weights_scale, projection_bias:
- // constant inputs, describing projection matrix and bias.
- // - proj_clip: if > 0, clip the output of the projection.
- // - output_state: output vector, size n_batch*n_output. Must be contigous.
- // - scratch: scratch area, size n_batch*n_cell.
- void CalculateLstmOutputFloat(int n_batch, int n_cell, int n_output,
- const float* cell_state, const float* output_gate,
- TfLiteFusedActivation activation,
- const float* projection_weights,
- const float* projection_bias,
- const float proj_clip, float* output_state,
- float* scratch) {
- micro_tensor_utils::ApplyActivationToVector(cell_state, n_batch * n_cell,
- activation, scratch);
- micro_tensor_utils::VectorVectorCwiseProduct(output_gate, scratch,
- n_batch * n_cell, scratch);
- const bool use_projection = (projection_weights != nullptr);
- const bool use_projection_bias = (projection_bias != nullptr);
- if (use_projection) {
- if (use_projection_bias) {
- micro_tensor_utils::VectorBatchVectorAssign(projection_bias, n_output,
- n_batch, output_state);
- } else {
- memset(output_state, 0, n_batch * n_output * sizeof(float));
- }
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- projection_weights, n_output, n_cell, scratch, n_batch, output_state);
- if (proj_clip > 0.0f) {
- micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
- proj_clip);
- }
- } else {
- std::memcpy(output_state, scratch, n_batch * n_output * sizeof(float));
- }
- }
- // Calculates a single LSTM gate, hybrid version.
- // Implements the same functionality as CalculateLstmGateFloat.
- void CalculateLstmGateHybrid(
- // Input and weights
- const int8_t* input, const float* input_sf, const int32_t* input_zp,
- const int8_t* input_to_gate_weights,
- const uint8_t* input_to_gate_weights_ledger,
- const float input_to_gate_weights_scale, int32_t* input_to_gate_row_sums,
- // Aux input and weights
- const int8_t* aux_input, const float* aux_input_sf,
- const int32_t* aux_input_zp, const int8_t* aux_input_to_gate_weights,
- const float aux_input_to_gate_weights_scale,
- int32_t* aux_input_to_gate_row_sums,
- // Output state and weights
- const int8_t* output_state, const float* output_state_sf,
- const int32_t* output_state_zp, const int8_t* recurrent_to_gate_weights,
- const uint8_t* recurrent_to_gate_weights_ledger,
- const float recurrent_to_gate_weights_scale,
- int32_t* recurrent_to_gate_row_sums,
- // Cell state and weights (peephole LSTM)
- const float* cell_state, const int8_t* cell_to_gate_weights,
- const float cell_to_gate_weights_scale,
- // Layer normalization coefficients (layer norm LSTM) + gate bias
- const float* layer_norm_coefficients, const float* gate_bias,
- // Array sizes
- const int n_batch, const int n_input, const int n_aux_input,
- const int n_output, const int n_cell,
- const TfLiteFusedActivation activation,
- // Output
- float* gate,
- // Parameters for performance optimizations
- const bool is_input_all_zeros, const bool is_aux_input_all_zeros,
- const bool is_output_state_all_zeros, bool* compute_row_sums,
- // Scratch arrays
- float* scratch0, // size: n_batch
- float* scratch1, // size: n_cell, only used if peephole LSTM
- float* scales, // size: n_batch
- int32_t* accum_scratch // For MatrixBatchVectorMultiplyAccumulate
- ) {
- const bool use_peephole = (cell_to_gate_weights != nullptr);
- const bool use_layer_norm = (layer_norm_coefficients != nullptr);
- // Initialize scratch buffers with bias for regular lstm or initialize with
- // zero for layer norm lstm.
- if (use_layer_norm) {
- memset(gate, 0, n_cell * n_batch * sizeof(float));
- } else {
- micro_tensor_utils::VectorBatchVectorAssign(gate_bias, n_cell, n_batch,
- gate);
- }
- // For each batch and cell: compute input_weight * input.
- // Skip if input is all zeros.
- if (!is_input_all_zeros) {
- if (input_to_gate_weights_ledger != nullptr) {
- for (int i = 0; i < n_batch; i++) {
- scales[i] = input_to_gate_weights_scale * input_sf[i];
- }
- micro_tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate(
- input_to_gate_weights, input_to_gate_weights_ledger, n_cell, n_input,
- input, scales, n_batch, gate);
- } else {
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- input_to_gate_weights, n_cell, n_input, input,
- input_to_gate_weights_scale, input_sf, n_batch, gate,
- /*per_channel_scale=*/nullptr, input_zp, accum_scratch,
- input_to_gate_row_sums, compute_row_sums, scratch0, nullptr);
- }
- }
- // For each batch and cell: compute aux_input_weight * aux_input.
- // Skip if auxiliary input is not available or all zeros.
- if (!is_aux_input_all_zeros) {
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- aux_input_to_gate_weights, n_cell, n_aux_input, aux_input,
- aux_input_to_gate_weights_scale, aux_input_sf, n_batch, gate,
- /*per_channel_scale=*/nullptr, aux_input_zp, accum_scratch,
- aux_input_to_gate_row_sums, compute_row_sums, scratch0, nullptr);
- }
- // For each batch and cell: compute recurrent_weight * output_state.
- // Skip if output state is all zeros.
- if (!is_output_state_all_zeros) {
- if (recurrent_to_gate_weights_ledger != nullptr) {
- for (int i = 0; i < n_batch; i++) {
- scales[i] = recurrent_to_gate_weights_scale * input_sf[i];
- }
- micro_tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate(
- recurrent_to_gate_weights, recurrent_to_gate_weights_ledger, n_cell,
- n_output, output_state, scales, n_batch, gate);
- } else {
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- recurrent_to_gate_weights, n_cell, n_output, output_state,
- recurrent_to_gate_weights_scale, output_state_sf, n_batch, gate,
- /*per_channel_scale=*/nullptr, output_state_zp, accum_scratch,
- recurrent_to_gate_row_sums, compute_row_sums, scratch0, nullptr);
- }
- }
- // For each batch and cell: compute cell_weight .* cell_state (peephole LSTM)
- if (use_peephole) {
- float* recovered_cell_weights = scratch1;
- micro_tensor_utils::VectorScalarMultiply(cell_to_gate_weights, n_cell,
- cell_to_gate_weights_scale,
- recovered_cell_weights);
- micro_tensor_utils::VectorBatchVectorCwiseProductAccumulate(
- recovered_cell_weights, n_cell, cell_state, n_batch, gate);
- }
- // Do layer normalization (if layer norm LSTM)
- if (use_layer_norm) {
- micro_tensor_utils::MeanStddevNormalization(gate, gate, n_cell, n_batch);
- micro_tensor_utils::VectorBatchVectorCwiseProduct(
- layer_norm_coefficients, n_cell, gate, n_batch, gate);
- micro_tensor_utils::VectorBatchVectorAdd(gate_bias, n_cell, n_batch, gate);
- }
- // Apply activation
- micro_tensor_utils::ApplyActivationToVector(gate, n_cell * n_batch,
- activation, gate);
- }
- // Calculates the output state tensor of an LSTM step. See Float version too.
- //
- // Parameters:
- // - n_batch: batches: the number of distinct vectors in each array.
- // - n_cell, n_output: sizes of vectors.
- // - cell_state, output_gate: input vectors, size n_batch*n_cell.
- // - projection_weights, projection_weights_scale, projection_bias:
- // constant inputs, describing projection matrix and bias.
- // - proj_clip: if > 0, clip the output of the projection.
- // - output_state: output vector, size n_batch*n_output. Must be contigous.
- // - asymmetric_quantize_inputs: parameter to control quantization.
- // - projection_weights_row_sums, compute_row_sums: Data for optimized
- // MatrixBatchVectorMultiplyAccumulate.
- // - scratch0: scratch area of size n_batch*n_cell
- // - scratch1: scratch area of size n_batch*n_cell
- // - scratch2: scratch area of size n_batch
- // - scratch3: scratch area of size n_batch
- // - scratch4: scratch area used by MatrixBatchVectorMultiplyAccumulate
- // - scales: scratch area of size n_batch
- void CalculateLstmOutputHybrid(
- int n_batch, int n_cell, int n_output, const float* cell_state,
- const float* output_gate, TfLiteFusedActivation activation,
- const int8_t* projection_weights, const uint8_t* projection_weights_ledger,
- float projection_weights_scale, const float* projection_bias,
- const float proj_clip, float* output_state, bool asymmetric_quantize_inputs,
- int32_t* projection_weights_row_sums, bool* compute_row_sums,
- float* scratch0, int8_t* scratch1, float* scratch2, int32_t* scratch3,
- int32_t* scratch4, float* scales) {
- micro_tensor_utils::ApplyActivationToVector(cell_state, n_batch * n_cell,
- activation, scratch0);
- micro_tensor_utils::VectorVectorCwiseProduct(output_gate, scratch0,
- n_batch * n_cell, scratch0);
- const bool use_projection = (projection_weights != nullptr);
- const bool use_projection_bias = (projection_bias != nullptr);
- if (use_projection) {
- if (use_projection_bias) {
- micro_tensor_utils::VectorBatchVectorAssign(projection_bias, n_output,
- n_batch, output_state);
- } else {
- memset(output_state, 0, n_batch * n_output * sizeof(float));
- }
- if (!micro_tensor_utils::IsZeroVector(scratch0, n_batch * n_cell)) {
- // Save quantization and matmul computation for all zero output.
- micro_tensor_utils::BatchQuantizeFloats(scratch0, n_batch, n_cell,
- scratch1, scratch2, scratch3,
- asymmetric_quantize_inputs);
- if (projection_weights_ledger != nullptr) {
- for (int i = 0; i < n_batch; i++) {
- scales[i] = projection_weights_scale * scratch2[i];
- }
- micro_tensor_utils::SparseMatrixBatchVectorMultiplyAccumulate(
- projection_weights, projection_weights_ledger, n_output, n_cell,
- scratch1, scales, n_batch, output_state);
- } else {
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- projection_weights, n_output, n_cell, scratch1,
- projection_weights_scale, scratch2, n_batch, output_state,
- /*per_channel_scale=*/nullptr, scratch3, scratch4,
- projection_weights_row_sums, compute_row_sums, scratch2, nullptr);
- }
- }
- if (proj_clip > 0.0f) {
- micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
- proj_clip);
- }
- } else {
- std::memcpy(output_state, scratch0, n_batch * n_output * sizeof(float));
- }
- }
- // Calculates a single LSTM gate, int8x8_16 version.
- // Implements the same functionality as CalculateLstmGateFloat.
- void CalculateLstmGateInteger8x8_16(
- // Input and weights
- const int8_t* input, const int8_t* input_to_gate_weights,
- const int32_t* input_to_gate_bias, const int32_t input_to_gate_scale_a,
- const int32_t input_to_gate_scale_b,
- // Output state and weights
- const int8_t* output_state, const int8_t* recurrent_to_gate_weights,
- const int32_t* recurrent_to_gate_bias,
- const int32_t recurrent_to_gate_scale_a,
- const int32_t recurrent_to_gate_scale_b,
- // Cell state and weights
- const int16_t* cell_state, const int16_t* cell_to_gate_weights,
- const int32_t cell_to_gate_scale_a, const int32_t cell_to_gate_scale_b,
- // Layer normalization parameters (layer norm LSTM)
- const int16_t* layer_norm_coefficients, const int32_t* layer_norm_bias,
- const int32_t layer_norm_input_scale_a,
- const int32_t layer_norm_input_scale_b,
- const int32_t layer_norm_variance_guard,
- // Array sizes
- const int n_batch, const int n_input, const int n_output, const int n_cell,
- const TfLiteFusedActivation activation,
- // Output
- int16_t* gate,
- // Parameters for performance optimizations
- // Scratch arrays
- int32_t* scratch5) {
- const bool use_peephole = (cell_to_gate_weights != nullptr);
- const bool use_layer_norm = (layer_norm_coefficients != nullptr);
- // Initialize scratch buffers with zeros. Note that unlike float and hybrid
- // versions, bias is only used in layer normalization.
- memset(gate, 0, n_batch * n_cell * sizeof(int16_t));
- // For each batch and cell: compute input_weight * input.
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- input, input_to_gate_bias, input_to_gate_weights, input_to_gate_scale_a,
- input_to_gate_scale_b, n_batch, n_input, n_cell, 0, scratch5, gate,
- nullptr);
- // Note: no aux_input.
- // For each batch and cell: compute recurrent_weight * output_state.
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- output_state, recurrent_to_gate_bias, recurrent_to_gate_weights,
- recurrent_to_gate_scale_a, recurrent_to_gate_scale_b, n_batch, n_output,
- n_cell, 0, scratch5, gate, nullptr);
- // For each batch and cell: compute cell_weight * cell_state (peephole LSTM)
- if (use_peephole) {
- micro_tensor_utils::VectorBatchVectorCwiseProductAccumulate(
- cell_to_gate_weights, n_output, cell_state, n_batch,
- cell_to_gate_scale_a, cell_to_gate_scale_b, gate);
- }
- // Do layer normalization (if layer norm LSTM)
- if (use_layer_norm) {
- micro_tensor_utils::ApplyLayerNorm(
- gate, layer_norm_coefficients, layer_norm_bias,
- layer_norm_input_scale_a, layer_norm_input_scale_b,
- layer_norm_variance_guard, n_batch, n_cell, gate);
- }
- // Apply activation
- switch (activation) {
- case kTfLiteActSigmoid:
- micro_tensor_utils::ApplySigmoid(gate, n_batch, n_cell, gate);
- break;
- case kTfLiteActTanh:
- micro_tensor_utils::ApplyTanh(3, gate, n_batch, n_cell, gate);
- break;
- default:
- // Only Sigmoid or Tanh is used.
- TFLITE_ASSERT_FALSE;
- }
- }
- // Updates the LSTM cell state, used by both integer LSTM versions.
- // Also see UpdateLstmCellFloat.
- //
- // Parameters:
- // - n_batch, n_cell: sizes of vectors
- // - cell_state: input/output vector, size n_batch*n_cell
- // - cell_state_scale: scaling factor of cell state.
- // - input_gate: input vector, size n_batch*n_cell.
- // - forget_gate: input/scratch vector, size n_batch*n_cell, always modified.
- // - cell_gate: input vector, size n_batch*n_cell.
- // - use_cifg: use 1-forget_gate instead of input_gate.
- // - clip: if > 0, clip the resulting cell state to [-clip, +clip].
- void UpdateLstmCellInteger(int n_batch, int n_cell, int16_t* cell_state,
- int32_t cell_state_scale, const int16_t* input_gate,
- int16_t* forget_gate, const int16_t* cell_gate,
- bool use_cifg, int16_t clip) {
- // Use the forget_gate array as scratch, as input_gate array is not allocated
- // in CIFG case. (Be careful not to write to the scratch before reading the
- // forget gate data.)
- int16_t* scratch = forget_gate;
- micro_tensor_utils::CwiseMul(forget_gate, cell_state, n_batch, n_cell, 15,
- cell_state);
- if (use_cifg) {
- micro_tensor_utils::Sub1Vector(forget_gate, n_batch * n_cell, scratch);
- micro_tensor_utils::CwiseMul(scratch, cell_gate, n_batch, n_cell,
- 30 + cell_state_scale, scratch);
- } else {
- micro_tensor_utils::CwiseMul(input_gate, cell_gate, n_batch, n_cell,
- 30 + cell_state_scale, scratch);
- }
- micro_tensor_utils::CwiseAdd(cell_state, scratch, n_batch, n_cell,
- cell_state);
- if (clip > 0) {
- micro_tensor_utils::CwiseClipping(cell_state, n_batch * n_cell, clip);
- }
- }
- // Calculates the output state tensor of an LSTM step. See Float and hybrid
- // versions as well.
- //
- // Parameters:
- // - n_batch: batches: the number of distinct vectors in each array.
- // - n_cell, n_output: sizes of vectors.
- // - cell_state, output_gate: input vectors, size n_batch*n_cell.
- // - cell_state_scale: scaling of cell_state.
- // - hidden_scale_[a|b]: effective scale of cell_state.*output_gate
- // - hidden_zp: zero_point for cell_state.*output_gate
- // - projection_weights, proj_scale_[a|b], projection_bias:
- // constant inputs, describing projection matrix and bias.
- // - output_state_zp: zero point of output_state. (Input, calibrated value.)
- // - quantized_proj_clip: if > 0, clip the output of the projection.
- // - output_state: output vector, size n_batch*n_output. Must be contigous.
- // - scratch0: scratch area of size n_batch*n_cell
- // - scratch1: scratch area of size n_batch*n_cell
- // - scratch2: scratch area used by MatrixBatchVectorMultiplyAccumulate
- void CalculateLstmOutputInteger8x8_16(
- int n_batch, int n_cell, int n_output, const int16_t* cell_state,
- int32_t cell_state_scale, const int16_t* output_gate,
- int32_t hidden_scale_a, int32_t hidden_scale_b, int32_t hidden_zp,
- const int8_t* projection_weights, int32_t proj_scale_a,
- int32_t proj_scale_b, const int32_t* projection_bias,
- int32_t output_state_zp, int8_t quantized_proj_clip, int8_t* output_state,
- int16_t* scratch0, int8_t* scratch1, int32_t* scratch2) {
- // Note: unlike float/hybrid, the activation is always Tanh.
- micro_tensor_utils::ApplyTanh(15 + cell_state_scale, cell_state, n_batch,
- n_cell, scratch0);
- micro_tensor_utils::CwiseMul(output_gate, scratch0, hidden_scale_a,
- hidden_scale_b, n_batch, n_cell, hidden_zp,
- scratch1);
- const bool use_projection = (projection_weights != nullptr);
- if (use_projection) {
- // Note: no bias like in float/hybrid
- memset(output_state, 0, n_batch * n_output * sizeof(int8_t));
- micro_tensor_utils::MatrixBatchVectorMultiplyAccumulate(
- scratch1, projection_bias, projection_weights, proj_scale_a,
- proj_scale_b, n_batch, n_cell, n_output, output_state_zp, scratch2,
- output_state, nullptr);
- if (quantized_proj_clip > 0) {
- micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
- quantized_proj_clip);
- }
- } else {
- std::memcpy(output_state, scratch1, n_batch * n_output * sizeof(int8_t));
- }
- }
- // Calculates a single LSTM gate, int8x8_8 version.
- // Implements the same functionality as CalculateLstmGateFloat.
- void CalculateLstmGateInteger8x8_8(
- // Inputs and weights
- const int8_t* input, int32_t input_zp, const int8_t* input_to_gate_weight,
- const int32_t input_to_gate_scale_a, const int32_t input_to_gate_scale_b,
- const int32_t input_times_weights_scale_a,
- const int32_t input_times_weights_scale_b,
- const int32_t input_times_weights_zp,
- // Output state and weights
- const int8_t* output_state, const int32_t output_state_zp,
- const int8_t* recurrent_to_gate_weight,
- const int32_t recurrent_to_gate_scale_a,
- const int32_t recurrent_to_gate_scale_b,
- const int32_t output_state_times_weights_scale_a,
- const int32_t output_state_times_weights_scale_b,
- const int32_t output_state_times_weights_zp,
- // Layer normalization parameters (layer norm LSTM)
- const int16_t* layer_norm_gate_weight,
- const int32_t layer_norm_gate_scale_a,
- const int32_t layer_norm_gate_scale_b, const int32_t* gate_bias,
- // Array sizes
- const int n_batch, const int n_input, const int n_output, const int n_cell,
- const TfLiteFusedActivation activation,
- // Output
- int16_t* gate,
- // Scratch arrays, both sized n_batch*n_cell
- int8_t* scratch0, int8_t* scratch1) {
- // Multiply input * input_weights => scratch0
- micro_tensor_utils::MatrixBatchVectorMultiply(
- input, input_zp, input_to_gate_weight, input_to_gate_scale_a,
- input_to_gate_scale_b, n_batch, n_input, n_cell, scratch0,
- input_times_weights_zp);
- // Multiply output_state * recurrent_weights => scratch1
- micro_tensor_utils::MatrixBatchVectorMultiply(
- output_state, output_state_zp, recurrent_to_gate_weight,
- recurrent_to_gate_scale_a, recurrent_to_gate_scale_b, n_batch, n_output,
- n_cell, scratch1, output_state_times_weights_zp);
- // Add scratch0 + scratch1 => gate
- micro_tensor_utils::TwoGateSaturatingAdd(
- scratch0, input_times_weights_zp, scratch1, output_state_times_weights_zp,
- input_times_weights_scale_a, input_times_weights_scale_b,
- output_state_times_weights_scale_a, output_state_times_weights_scale_b,
- n_batch, n_cell, gate);
- // Apply layer normalization.
- micro_tensor_utils::ApplyLayerNormFloat(
- gate, layer_norm_gate_weight, layer_norm_gate_scale_a,
- layer_norm_gate_scale_b, gate_bias, n_batch, n_cell, gate);
- // Apply activation.
- switch (activation) {
- case kTfLiteActSigmoid:
- micro_tensor_utils::ApplySigmoidFloat(gate, n_batch, n_cell, gate);
- break;
- case kTfLiteActTanh:
- micro_tensor_utils::ApplyTanhFloat(gate, n_batch, n_cell, -12, gate);
- break;
- default:
- // Only Sigmoid or Tanh is used.
- TFLITE_ASSERT_FALSE;
- }
- }
- // Calculates the output state tensor of an LSTM step. See Float and hybrid
- // versions as well.
- //
- // Parameters:
- // - n_batch: batches: the number of distinct vectors in each array.
- // - n_cell, n_output: sizes of vectors.
- // - cell_state, output_gate: input vectors, size n_batch*n_cell.
- // - projection_weights, proj_scale_[a|b], projection_bias:
- // constant inputs, describing projection matrix and bias.
- // - output_state_zp: zero point of the output state.
- // - quantized_proj_clip: if > 0, clip the output of the projection.
- // - output_state: output vector, size n_batch*n_output. Must be contigous.
- // - scratch: scratch area of size n_batch*n_cell
- void CalculateLstmOutputInteger8x8_8(
- int n_batch, int n_cell, int n_output, const int16_t* cell_state,
- const int16_t* output_gate, const int8_t* projection_weights,
- int32_t proj_scale_a, int32_t proj_scale_b, const int32_t* projection_bias,
- int32_t output_state_zp, int32_t quantized_proj_clip, int8_t* output_state,
- int16_t* scratch) {
- // Note: unlike float/hybrid, the activation is always Tanh.
- micro_tensor_utils::ApplyTanhFloat(cell_state, n_batch, n_cell, -15, scratch);
- micro_tensor_utils::CwiseMul(output_gate, scratch, n_batch, n_cell,
- 15 + 15 - 15, scratch);
- // Note: no bias like in float/hybrid
- micro_tensor_utils::MatrixBatchVectorMultiply(
- scratch, projection_weights, proj_scale_a, proj_scale_b, projection_bias,
- n_batch, n_cell, n_output, output_state_zp, output_state);
- if (quantized_proj_clip > 0) {
- micro_tensor_utils::CwiseClipping(output_state, n_batch * n_output,
- quantized_proj_clip);
- }
- }
- // Performs an LSTM batch inference step for input specified by input_ptr.
- // The LSTM cell is specified by the pointers to its weights (*_weights_ptr) and
- // biases (*_bias_ptr), and buffers (*_scratch), along with additional
- // parameters:
- // - params: various LSTM params including activation, clipping, etc.,
- // - n_batch: size of batch,
- // - n_cell: number of cells (or units),
- // - n_input: the input size,
- // - n_aux_input: the auxiliary input size.
- // - n_output: the output size.
- // - output_batch_leading_dim: the leading dimension of the output buffer.
- //
- // Input of size 'n_batch * n_input':
- // input_ptr
- // Input of size 'n_batch * n_aux_input':
- // aux_input_ptr - optional (can be nullptr)
- //
- // LSTM weights:
- // Input weights of size 'n_cell * n_input':
- // input_to_input_weights - optional
- // input_to_forget_weights
- // input_to_cell_weights
- // input_to_output_weights
- // Auxiliary input weights of size 'n_cell * n_aux_input':
- // aux_input_to_input_weights - optional
- // aux_input_to_forget_weights - optional
- // aux_input_to_cell_weights - optional
- // aux_input_to_output_weights - optional
- // Recurrent weights of size 'n_cell * n_output':
- // recurrent_to_input_weights - optional
- // recurrent_to_forget_weights
- // recurrent_to_cell_weights
- // recurrent_to_input_weights
- // Peephole weights of size 'n_cell', representing diagonal matrices.
- // cell_to_input_weights - optional
- // cell_to_cell_weights - optional
- // cell_to_output_weights - optional
- // Projection weights of size 'n_output * n_cell'
- // projection_weights_ptr - optional
- // Gate biases of size 'n_cell':
- // input_gate_bias_ptr - optional
- // forget_gate_bias_ptr
- // cell_gate_bias_ptr
- // output_gate_bias_ptr
- //
- // Layer norm coefficients of size 'n_cell', representing diagonal matrices.
- // input_layer_norm_coefficients_ptr - optional
- // forget_layer_norm_coefficients_ptr - optional
- // cell_layer_norm_coefficients_ptr - optional
- // output_layer_norm_coefficients_ptr - optional
- //
- // The pointers to the cell and output state and the output are updated.
- //
- // The pointers input_ptr, aux_input_ptr, and output_ptr point to data aligned
- // in batch_major order, and each step processes batch_size many inputs from
- // input_ptr, and updates batch_size many cell and output states.
- //
- // The output_batch_dim is output.shape[-1], i.e. the outermost dimension of the
- // output tensor, and in most cases will be equal to n_output. It is usually not
- // when we want to store the LSTM output into a slice of the output tensor, e.g.
- // for bidirectional LSTMs with merge_outputs. In this case, the batched
- // operations cannot be used since they assume that the batched outputs are
- // contiguous, and we manually loop over the batched outputs.
- inline void LstmStepFloat(
- const float* input_ptr, const float* input_to_input_weights_ptr,
- const float* input_to_forget_weights_ptr,
- const float* input_to_cell_weights_ptr,
- const float* input_to_output_weights_ptr, const float* aux_input_ptr,
- const float* aux_input_to_input_weights_ptr,
- const float* aux_input_to_forget_weights_ptr,
- const float* aux_input_to_cell_weights_ptr,
- const float* aux_input_to_output_weights_ptr,
- const float* recurrent_to_input_weights_ptr,
- const float* recurrent_to_forget_weights_ptr,
- const float* recurrent_to_cell_weights_ptr,
- const float* recurrent_to_output_weights_ptr,
- const float* cell_to_input_weights_ptr,
- const float* cell_to_forget_weights_ptr,
- const float* cell_to_output_weights_ptr,
- const float* input_layer_norm_coefficients_ptr,
- const float* forget_layer_norm_coefficients_ptr,
- const float* cell_layer_norm_coefficients_ptr,
- const float* output_layer_norm_coefficients_ptr,
- const float* input_gate_bias_ptr, const float* forget_gate_bias_ptr,
- const float* cell_gate_bias_ptr, const float* output_gate_bias_ptr,
- const float* projection_weights_ptr, const float* projection_bias_ptr,
- const TfLiteLSTMParams* params, int n_batch, int n_cell, int n_input,
- int n_aux_input, int n_output, int output_batch_leading_dim,
- float* output_state_ptr, float* cell_state_ptr, float* scratch0,
- float* scratch1, float* scratch2, float* scratch3, float* output_ptr) {
- // Since we have already checked that weights are all there or none, we can
- // check the existence of only one to the get the condition.
- const bool use_cifg = (input_to_input_weights_ptr == nullptr);
- // Make named scratch buffers.
- float* input_gate_scratch = scratch0;
- float* forget_gate_scratch = scratch1;
- float* cell_gate_scratch = scratch2;
- float* output_gate_scratch = scratch3;
- // Check if inputs are all zeros so we can skip some computations.
- const bool is_input_all_zeros =
- micro_tensor_utils::IsZeroVector(input_ptr, n_batch * n_input);
- const bool is_aux_input_all_zeros =
- (aux_input_ptr == nullptr ||
- micro_tensor_utils::IsZeroVector(aux_input_ptr, n_batch * n_aux_input));
- if (!use_cifg) {
- // Calculate the input gate. (If not CIFG.)
- CalculateLstmGateFloat(
- input_ptr, input_to_input_weights_ptr, aux_input_ptr,
- aux_input_to_input_weights_ptr, output_state_ptr,
- recurrent_to_input_weights_ptr, cell_state_ptr,
- cell_to_input_weights_ptr, input_layer_norm_coefficients_ptr,
- input_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
- /*activation=*/kTfLiteActSigmoid, input_gate_scratch,
- is_input_all_zeros, is_aux_input_all_zeros);
- }
- // Calculate the forget gate.
- CalculateLstmGateFloat(
- input_ptr, input_to_forget_weights_ptr, aux_input_ptr,
- aux_input_to_forget_weights_ptr, output_state_ptr,
- recurrent_to_forget_weights_ptr, cell_state_ptr,
- cell_to_forget_weights_ptr, forget_layer_norm_coefficients_ptr,
- forget_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
- /*activation=*/kTfLiteActSigmoid, forget_gate_scratch, is_input_all_zeros,
- is_aux_input_all_zeros);
- // Calculate the cell update gate.
- CalculateLstmGateFloat(input_ptr, input_to_cell_weights_ptr, aux_input_ptr,
- aux_input_to_cell_weights_ptr, output_state_ptr,
- recurrent_to_cell_weights_ptr, /*cell_state=*/nullptr,
- /*cell_to_gate_weights=*/nullptr,
- cell_layer_norm_coefficients_ptr, cell_gate_bias_ptr,
- n_batch, n_input, n_aux_input, n_output, n_cell,
- params->activation, cell_gate_scratch,
- is_input_all_zeros, is_aux_input_all_zeros);
- // Update the cell state.
- UpdateLstmCellFloat(n_batch, n_cell, cell_state_ptr, input_gate_scratch,
- forget_gate_scratch, cell_gate_scratch, use_cifg,
- params->cell_clip);
- // Calculate output gate.
- CalculateLstmGateFloat(
- input_ptr, input_to_output_weights_ptr, aux_input_ptr,
- aux_input_to_output_weights_ptr, output_state_ptr,
- recurrent_to_output_weights_ptr, cell_state_ptr,
- cell_to_output_weights_ptr, output_layer_norm_coefficients_ptr,
- output_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
- /*activation=*/kTfLiteActSigmoid, output_gate_scratch, is_input_all_zeros,
- is_aux_input_all_zeros);
- // Update the output state.
- CalculateLstmOutputFloat(n_batch, n_cell, n_output, cell_state_ptr,
- output_gate_scratch, params->activation,
- projection_weights_ptr, projection_bias_ptr,
- params->proj_clip, output_state_ptr, scratch2);
- // Copy output state to the output. Note that the output's rows may not be
- // contiguous (output_batch_leading_dim != n_output).
- for (int b = 0; b < n_batch; b++) {
- std::memcpy(output_ptr + b * output_batch_leading_dim,
- output_state_ptr + b * n_output, n_output * sizeof(float));
- }
- }
- // Same as above but with quantized weight matrices. In detail:
- // Input of size 'n_batch * n_input':
- // input_ptr
- // Input of size 'n_batch * n_aux_input':
- // aux_input_ptr - optional (can be nullptr)
- //
- // LSTM weights:
- // Quantized input weights of size 'n_cell * n_input':
- // input_to_input_weights - optional
- // input_to_forget_weights
- // input_to_cell_weights
- // input_to_input_weights
- // Quantized auxiliary input weights of size 'n_cell * n_aux_input':
- // aux_input_to_input_weights - optional
- // aux_input_to_forget_weights - optional
- // aux_input_to_cell_weights - optional
- // aux_input_to_output_weights - optional
- // Quantized recurrent weights of size 'n_cell * n_output':
- // recurrent_to_input_weights - optional
- // recurrent_to_forget_weights
- // recurrent_to_cell_weights
- // recurrent_to_input_weights
- // Quantized peephole weights of size 'n_cell', representing diagonal matrices.
- // cell_to_input_weights - optional
- // cell_to_cell_weights - optional
- // cell_to_output_weights - optional
- // Quantized projection weights of size 'n_output * n_cell'
- // projection_weights_ptr - optional
- // Weight scales (scalars) for each of the weights above.
- // input_to_input_weights_scale - optional
- // input_to_forget_weights_scale
- // input_to_cell_weights_scale
- // input_to_output_weights_scale
- // aux_input_to_input_weights_scale - optional
- // aux_input_to_forget_weights_scale - optional
- // aux_input_to_cell_weights_scale - optional
- // aux_input_to_output_weights_scale - optional
- // recurrent_to_input_weights_scale - optional
- // recurrent_to_forget_weights_scale
- // recurrent_to_cell_weights_scale
- // recurrent_to_output_weights_scale
- // cell_to_input_weights_scale,
- // cell_to_forget_weights_scale,
- // cell_to_output_weights_scale,
- // projection_weights_scale - optional
- // Gate biases of size 'n_cell':
- // input_gate_bias_ptr - optional
- // forget_gate_bias_ptr
- // cell_gate_bias_ptr
- // output_gate_bias_ptr
- //
- // Layer norm coefficients of size 'n_cell', representing diagonal matrices.
- // input_layer_norm_coefficients_ptr - optional
- // forget_layer_norm_coefficients_ptr - optional
- // cell_layer_norm_coefficients_ptr - optional
- // output_layer_norm_coefficients_ptr - optional
- //
- // Temporary pre-allocated storage for quantized values:
- // quantized_input_ptr (same size as input_ptr)
- // quantized_output_state_ptr (same size as output_state_ptr)
- // quantized_output_scratch (same size as cell_state_ptr)
- // Temporary pre-allocated storage for recovered values:
- // recovered_cell_weights (same size as cell_to_*_weights)
- //
- // Outputs:
- // output_state_ptr - size 'n_batch * n_output'
- // cell_state_ptr - size 'n_batch * n_cell'
- // output_ptr - size 'n_batch * output_batch_leading_dim'
- inline void LstmStepHybrid(
- const float* input_ptr, const int8_t* input_to_input_weights_ptr,
- const uint8_t* input_to_input_weights_ledger_ptr,
- float input_to_input_weights_scale,
- const int8_t* input_to_forget_weights_ptr,
- const uint8_t* input_to_forget_weights_ledger_ptr,
- float input_to_forget_weights_scale,
- const int8_t* input_to_cell_weights_ptr,
- const uint8_t* input_to_cell_weights_ledger_ptr,
- float input_to_cell_weights_scale,
- const int8_t* input_to_output_weights_ptr,
- const uint8_t* input_to_output_weights_ledger_ptr,
- float input_to_output_weights_scale, const float* aux_input_ptr,
- const int8_t* aux_input_to_input_weights_ptr,
- float aux_input_to_input_weights_scale,
- const int8_t* aux_input_to_forget_weights_ptr,
- float aux_input_to_forget_weights_scale,
- const int8_t* aux_input_to_cell_weights_ptr,
- float aux_input_to_cell_weights_scale,
- const int8_t* aux_input_to_output_weights_ptr,
- float aux_input_to_output_weights_scale,
- const int8_t* recurrent_to_input_weights_ptr,
- const uint8_t* recurrent_to_input_weights_ledger_ptr,
- float recurrent_to_input_weights_scale,
- const int8_t* recurrent_to_forget_weights_ptr,
- const uint8_t* recurrent_to_forget_weights_ledger_ptr,
- float recurrent_to_forget_weights_scale,
- const int8_t* recurrent_to_cell_weights_ptr,
- const uint8_t* recurrent_to_cell_weights_ledger_ptr,
- float recurrent_to_cell_weights_scale,
- const int8_t* recurrent_to_output_weights_ptr,
- const uint8_t* recurrent_to_output_weights_ledger_ptr,
- float recurrent_to_output_weights_scale,
- const int8_t* cell_to_input_weights_ptr, float cell_to_input_weights_scale,
- const int8_t* cell_to_forget_weights_ptr,
- float cell_to_forget_weights_scale,
- const int8_t* cell_to_output_weights_ptr,
- float cell_to_output_weights_scale,
- const float* input_layer_norm_coefficients_ptr,
- const float* forget_layer_norm_coefficients_ptr,
- const float* cell_layer_norm_coefficients_ptr,
- const float* output_layer_norm_coefficients_ptr,
- const float* input_gate_bias_ptr, const float* forget_gate_bias_ptr,
- const float* cell_gate_bias_ptr, const float* output_gate_bias_ptr,
- const int8_t* projection_weights_ptr,
- const uint8_t* projection_weights_ledger_ptr,
- float projection_weights_scale, const float* projection_bias_ptr,
- const TfLiteLSTMParams* params, int n_batch, int n_cell, int n_input,
- int n_aux_input, int n_output, int output_batch_leading_dim,
- float* scratch0, float* scratch1, float* scratch2, float* scratch3,
- float* scales, float* input_sf, float* aux_input_sf, float* output_state_sf,
- float* scaling_factors_scratch, float* recovered_cell_weights,
- int8_t* quantized_input_ptr, int8_t* quantized_aux_input_ptr,
- int8_t* quantized_output_state_ptr, int8_t* quantized_output_scratch,
- float* output_state_ptr, float* cell_state_ptr, int32_t* accum_scratch_ptr,
- float* output_ptr, int32_t* input_zp, int32_t* aux_input_zp,
- int32_t* output_state_zp, int32_t* row_sums, int row_sums_size,
- bool* compute_row_sums, bool asymmetric_quantize_inputs) {
- // Since we have already checked that weights are all there or none, we
- // can check the existence of only one to the get the condition.
- const bool use_cifg = (input_to_input_weights_ptr == nullptr);
- // Make named scratch buffers for the different gates.
- float* input_gate_scratch = scratch0;
- float* forget_gate_scratch = scratch1;
- float* cell_gate_scratch = scratch2;
- float* output_gate_scratch = scratch3;
- int32_t* input_to_input_row_sums = nullptr;
- int32_t* input_to_forget_row_sums = nullptr;
- int32_t* input_to_cell_row_sums = nullptr;
- int32_t* input_to_output_row_sums = nullptr;
- int32_t* aux_input_to_input_row_sums = nullptr;
- int32_t* aux_input_to_forget_row_sums = nullptr;
- int32_t* aux_input_to_cell_row_sums = nullptr;
- int32_t* aux_input_to_output_row_sums = nullptr;
- int32_t* recurrent_to_input_row_sums = nullptr;
- int32_t* recurrent_to_forget_row_sums = nullptr;
- int32_t* recurrent_to_cell_row_sums = nullptr;
- int32_t* recurrent_to_output_row_sums = nullptr;
- int32_t* projection_weights_row_sums = nullptr;
- if (asymmetric_quantize_inputs) {
- int num_row_sums = use_cifg ? 6 : 8;
- if (aux_input_ptr != nullptr) {
- num_row_sums += use_cifg ? 3 : 4;
- }
- if (projection_weights_ptr != nullptr) {
- num_row_sums += ceil(static_cast<float>(n_output) / n_cell);
- }
- TFLITE_DCHECK(row_sums_size == num_row_sums);
- input_to_input_row_sums = row_sums;
- input_to_forget_row_sums =
- use_cifg ? input_to_input_row_sums : input_to_input_row_sums + n_cell;
- input_to_cell_row_sums = input_to_forget_row_sums + n_cell;
- input_to_output_row_sums = input_to_cell_row_sums + n_cell;
- if (aux_input_ptr != nullptr) {
- aux_input_to_input_row_sums = input_to_output_row_sums + n_cell;
- aux_input_to_forget_row_sums = use_cifg
- ? aux_input_to_input_row_sums
- : aux_input_to_input_row_sums + n_cell;
- aux_input_to_cell_row_sums = aux_input_to_forget_row_sums + n_cell;
- aux_input_to_output_row_sums = aux_input_to_cell_row_sums + n_cell;
- }
- recurrent_to_input_row_sums = aux_input_ptr
- ? aux_input_to_output_row_sums + n_cell
- : input_to_output_row_sums + n_cell;
- recurrent_to_forget_row_sums = use_cifg
- ? recurrent_to_input_row_sums
- : recurrent_to_input_row_sums + n_cell;
- recurrent_to_cell_row_sums = recurrent_to_forget_row_sums + n_cell;
- recurrent_to_output_row_sums = recurrent_to_cell_row_sums + n_cell;
- if (projection_weights_ptr != nullptr) {
- projection_weights_row_sums = recurrent_to_output_row_sums + n_cell;
- }
- if (*compute_row_sums) {
- ComputeRowSums(
- input_to_input_row_sums, input_to_forget_row_sums,
- input_to_cell_row_sums, input_to_output_row_sums,
- aux_input_to_input_row_sums, aux_input_to_forget_row_sums,
- aux_input_to_cell_row_sums, aux_input_to_output_row_sums,
- recurrent_to_input_row_sums, recurrent_to_forget_row_sums,
- recurrent_to_cell_row_sums, recurrent_to_output_row_sums,
- projection_weights_row_sums, row_sums, n_cell, n_input, n_aux_input,
- n_output, input_to_input_weights_ptr, input_to_forget_weights_ptr,
- input_to_cell_weights_ptr, input_to_output_weights_ptr,
- aux_input_to_input_weights_ptr, aux_input_to_forget_weights_ptr,
- aux_input_to_cell_weights_ptr, aux_input_to_output_weights_ptr,
- recurrent_to_input_weights_ptr, recurrent_to_forget_weights_ptr,
- recurrent_to_cell_weights_ptr, recurrent_to_output_weights_ptr,
- projection_weights_ptr, use_cifg, aux_input_ptr);
- *compute_row_sums = false;
- }
- }
- // Check if inputs are all zeros so we can skip some computations.
- const bool is_input_all_zeros =
- micro_tensor_utils::IsZeroVector(input_ptr, n_batch * n_input);
- const bool is_aux_input_all_zeros =
- (aux_input_ptr == nullptr ||
- micro_tensor_utils::IsZeroVector(aux_input_ptr, n_batch * n_aux_input));
- const bool is_output_state_all_zeros =
- micro_tensor_utils::IsZeroVector(output_state_ptr, n_batch * n_output);
- // Quantize inputs.
- if (!is_input_all_zeros) {
- micro_tensor_utils::BatchQuantizeFloats(
- input_ptr, n_batch, n_input, quantized_input_ptr, input_sf, input_zp,
- asymmetric_quantize_inputs);
- }
- if (!is_aux_input_all_zeros) {
- micro_tensor_utils::BatchQuantizeFloats(
- aux_input_ptr, n_batch, n_aux_input, quantized_aux_input_ptr,
- aux_input_sf, aux_input_zp, asymmetric_quantize_inputs);
- }
- if (!is_output_state_all_zeros) {
- micro_tensor_utils::BatchQuantizeFloats(
- output_state_ptr, n_batch, n_output, quantized_output_state_ptr,
- output_state_sf, output_state_zp, asymmetric_quantize_inputs);
- }
- if (!use_cifg) {
- // Calculate the input gate. (If not CIFG.)
- CalculateLstmGateHybrid(
- quantized_input_ptr, input_sf, input_zp, input_to_input_weights_ptr,
- input_to_input_weights_ledger_ptr, input_to_input_weights_scale,
- input_to_input_row_sums, quantized_aux_input_ptr, aux_input_sf,
- aux_input_zp, aux_input_to_input_weights_ptr,
- aux_input_to_input_weights_scale, aux_input_to_input_row_sums,
- quantized_output_state_ptr, output_state_sf, output_state_zp,
- recurrent_to_input_weights_ptr, recurrent_to_input_weights_ledger_ptr,
- recurrent_to_input_weights_scale, recurrent_to_input_row_sums,
- cell_state_ptr, cell_to_input_weights_ptr, cell_to_input_weights_scale,
- input_layer_norm_coefficients_ptr, input_gate_bias_ptr, n_batch,
- n_input, n_aux_input, n_output, n_cell, kTfLiteActSigmoid,
- input_gate_scratch, is_input_all_zeros, is_aux_input_all_zeros,
- is_output_state_all_zeros, compute_row_sums, scaling_factors_scratch,
- recovered_cell_weights, scales, accum_scratch_ptr);
- }
- // Calculate the forget gate.
- CalculateLstmGateHybrid(
- quantized_input_ptr, input_sf, input_zp, input_to_forget_weights_ptr,
- input_to_forget_weights_ledger_ptr, input_to_forget_weights_scale,
- input_to_forget_row_sums, quantized_aux_input_ptr, aux_input_sf,
- aux_input_zp, aux_input_to_forget_weights_ptr,
- aux_input_to_forget_weights_scale, aux_input_to_forget_row_sums,
- quantized_output_state_ptr, output_state_sf, output_state_zp,
- recurrent_to_forget_weights_ptr, recurrent_to_forget_weights_ledger_ptr,
- recurrent_to_forget_weights_scale, recurrent_to_forget_row_sums,
- cell_state_ptr, cell_to_forget_weights_ptr, cell_to_forget_weights_scale,
- forget_layer_norm_coefficients_ptr, forget_gate_bias_ptr, n_batch,
- n_input, n_aux_input, n_output, n_cell, kTfLiteActSigmoid,
- forget_gate_scratch, is_input_all_zeros, is_aux_input_all_zeros,
- is_output_state_all_zeros, compute_row_sums, scaling_factors_scratch,
- recovered_cell_weights, scales, accum_scratch_ptr);
- // Calculate the cell update gate.
- CalculateLstmGateHybrid(
- quantized_input_ptr, input_sf, input_zp, input_to_cell_weights_ptr,
- input_to_cell_weights_ledger_ptr, input_to_cell_weights_scale,
- input_to_cell_row_sums, quantized_aux_input_ptr, aux_input_sf,
- aux_input_zp, aux_input_to_cell_weights_ptr,
- aux_input_to_cell_weights_scale, aux_input_to_cell_row_sums,
- quantized_output_state_ptr, output_state_sf, output_state_zp,
- recurrent_to_cell_weights_ptr, recurrent_to_cell_weights_ledger_ptr,
- recurrent_to_cell_weights_scale, recurrent_to_cell_row_sums,
- /*cell_state=*/nullptr, /*cell_to_gate_weights=*/nullptr,
- /*cell_to_gate_weights_scale=*/0.0f, cell_layer_norm_coefficients_ptr,
- cell_gate_bias_ptr, n_batch, n_input, n_aux_input, n_output, n_cell,
- params->activation, cell_gate_scratch, is_input_all_zeros,
- is_aux_input_all_zeros, is_output_state_all_zeros, compute_row_sums,
- scaling_factors_scratch, recovered_cell_weights, scales,
- accum_scratch_ptr);
- // Update the cell state.
- UpdateLstmCellFloat(n_batch, n_cell, cell_state_ptr, input_gate_scratch,
- forget_gate_scratch, cell_gate_scratch, use_cifg,
- params->cell_clip);
- // Calculate the output gate.
- CalculateLstmGateHybrid(
- quantized_input_ptr, input_sf, input_zp, input_to_output_weights_ptr,
- input_to_output_weights_ledger_ptr, input_to_output_weights_scale,
- input_to_output_row_sums, quantized_aux_input_ptr, aux_input_sf,
- aux_input_zp, aux_input_to_output_weights_ptr,
- aux_input_to_output_weights_scale, aux_input_to_output_row_sums,
- quantized_output_state_ptr, output_state_sf, output_state_zp,
- recurrent_to_output_weights_ptr, recurrent_to_output_weights_ledger_ptr,
- recurrent_to_output_weights_scale, recurrent_to_output_row_sums,
- cell_state_ptr, cell_to_output_weights_ptr, cell_to_output_weights_scale,
- output_layer_norm_coefficients_ptr, output_gate_bias_ptr, n_batch,
- n_input, n_aux_input, n_output, n_cell, kTfLiteActSigmoid,
- output_gate_scratch, is_input_all_zeros, is_aux_input_all_zeros,
- is_output_state_all_zeros, compute_row_sums, scaling_factors_scratch,
- recovered_cell_weights, scales, accum_scratch_ptr);
- // Update the output state.
- CalculateLstmOutputHybrid(
- n_batch, n_cell, n_output, cell_state_ptr, output_gate_scratch,
- params->activation, projection_weights_ptr, projection_weights_ledger_ptr,
- projection_weights_scale, projection_bias_ptr, params->proj_clip,
- output_state_ptr, asymmetric_quantize_inputs, projection_weights_row_sums,
- compute_row_sums, scratch2, quantized_output_scratch, input_sf, input_zp,
- accum_scratch_ptr, scales);
- // Copy output state to the output. Note that the output's rows may not be
- // contiguous (output_batch_leading_dim != n_output).
- for (int b = 0; b < n_batch; b++) {
- std::memcpy(output_ptr + b * output_batch_leading_dim,
- output_state_ptr + b * n_output, n_output * sizeof(float));
- }
- }
- // Fully quantized lstm kernel for 16 bit gate matmul output.
- //
- // Input tensor of size n_batch * n_input:
- // input_ptr
- //
- // LSTM weights:
- // Quantized input weights of size 'n_cell * n_input':
- // input_to_input_weight_ptr - optional
- // input_to_forget_weight_ptr - optional
- // input_to_cell_weight_ptr - optional
- // input_to_output_weight_ptr - optional
- //
- // Quantized recurrent weights of size 'n_cell * n_output':
- // recurrent_to_input_weight_ptr - optional
- // recurrent_to_forget_weights_ptr
- // recurrent_to_cell_weights_ptr
- // recurrent_to_input_weights_ptr
- //
- // Quantized peephole weights of size 'n_cell', representing diagonal matrices.
- // cell_to_input_weights - optional
- // cell_to_cell_weights - optional
- // cell_to_output_weights - optional
- //
- // Quantized projection weights of size 'n_output * n_cell'
- // projection_weight_ptr - optional
- //
- // Weight scales (scalars) for each of the weights above.
- // effective_input_to_input_scale_a - optional
- // effective_input_to_input_scale_b - optional
- // effective_input_to_forget_scale_a
- // effective_input_to_forget_scale_b
- // effective_input_to_cell_scale_a
- // effective_input_to_cell_scale_b
- // effective_input_to_output_scale_a
- // effective_input_to_output_scale_b
- // effective_recurrent_to_input_scale_a - optional
- // effective_recurrent_to_input_scale_b - optional
- // effective_recurrent_to_forget_scale_a
- // effective_recurrent_to_forget_scale_b
- // effective_recurrent_to_cell_scale_a
- // effective_recurrent_to_cell_scale_b
- // effective_recurrent_to_output_scale_a
- // effective_recurrent_to_output_scale_b
- // effective_proj_scale_a - optional
- // effective_proj_scale_b - optional
- //
- // Gate biases of size 'n_cell':
- // input_gate_bias_ptr - optional
- // forget_gate_bias_ptr
- // cell_gate_bias_ptr
- // output_gate_bias_ptr
- //
- // Layer norm coefficients of size 'n_cell', representing diagonal matrices.
- // layer_norm_input_weight_ptr - optional
- // layer_norm_forget_weight_ptr - optional
- // layer_norm_cell_weight_ptr - optional
- // layer_norm_output_weight_ptr - optional
- //
- // Layer norm scales of size 'n_cell'.
- // layer_norm_input_scale_a - optional
- // layer_norm_input_scale_b - optional
- // layer_norm_forget_scale_a - optional
- // layer_norm_forget_scale_b - optional
- // layer_norm_cell_scale_a - optional
- // layer_norm_cell_scale_b - optional
- // layer_norm_output_scale_a - optional
- // layer_norm_output_scale_b - optional
- //
- // Scalar values:
- // quantized_cell_clip: quantized clip value for cell.
- // quantized_proj_clip: quantized clip value for projection.
- // cell_state_scale: the power of two scale for cell state.
- //
- // Zero points:
- // output_state_zp: zero point of output state
- // hidden_zp: zero point for hidden state.
- //
- // Temporary pre-allocated storage for the calculation. Each is of size n_cell *
- // n_batch.
- // scratch0
- // scratch1
- // scratch2
- // scratch3
- // scratch4
- // scratch5: this scratch buffer is created purely for optimizing the
- // MatrixBatchVectorMultiplyAccumulate.
- //
- // Outputs:
- // output_state_ptr - size 'n_batch * n_output'
- // cell_state_ptr - size 'n_batch * n_cell'
- // output_ptr - size 'n_batch * n_output'
- // TODO(b/159947023): scratch0 is not used if (!cifg). Don't allocate then.
- inline void LstmStepInteger8x8_16(
- const int8_t* input_ptr, const int8_t* input_to_input_weight_ptr,
- int32_t effective_input_to_input_scale_a,
- int32_t effective_input_to_input_scale_b,
- const int8_t* input_to_forget_weight_ptr,
- int32_t effective_input_to_forget_scale_a,
- int32_t effective_input_to_forget_scale_b,
- const int8_t* input_to_cell_weight_ptr,
- int32_t effective_input_to_cell_scale_a,
- int32_t effective_input_to_cell_scale_b,
- const int8_t* input_to_output_weight_ptr,
- int32_t effective_input_to_output_scale_a,
- int32_t effective_input_to_output_scale_b,
- const int8_t* recurrent_to_input_weight_ptr,
- int32_t effective_recurrent_to_input_scale_a,
- int32_t effective_recurrent_to_input_scale_b,
- const int8_t* recurrent_to_forget_weight_ptr,
- int32_t effective_recurrent_to_forget_scale_a,
- int32_t effective_recurrent_to_forget_scale_b,
- const int8_t* recurrent_to_cell_weight_ptr,
- int32_t effective_recurrent_to_cell_scale_a,
- int32_t effective_recurrent_to_cell_scale_b,
- const int8_t* recurrent_to_output_weight_ptr,
- int32_t effective_recurrent_to_output_scale_a,
- int32_t effective_recurrent_to_output_scale_b,
- const int16_t* cell_to_input_weight_ptr,
- int32_t effective_cell_to_input_scale_a,
- int32_t effective_cell_to_input_scale_b,
- const int16_t* cell_to_forget_weight_ptr,
- int32_t effective_cell_to_forget_scale_a,
- int32_t effective_cell_to_forget_scale_b,
- const int16_t* cell_to_output_weight_ptr,
- int32_t effective_cell_to_output_scale_a,
- int32_t effective_cell_to_output_scale_b,
- const int8_t* projection_weight_ptr, int32_t effective_proj_scale_a,
- int32_t effective_proj_scale_b, int32_t hidden_zp,
- int32_t effective_hidden_scale_a, int32_t effective_hidden_scale_b,
- const int16_t* layer_norm_input_weight_ptr,
- int32_t layer_norm_input_scale_a, int32_t layer_norm_input_scale_b,
- const int16_t* layer_norm_forget_weight_ptr,
- int32_t layer_norm_forget_scale_a, int32_t layer_norm_forget_scale_b,
- const int16_t* layer_norm_cell_weight_ptr, int32_t layer_norm_cell_scale_a,
- int32_t layer_norm_cell_scale_b,
- const int16_t* layer_norm_output_weight_ptr,
- int32_t layer_norm_output_scale_a, int32_t layer_norm_output_scale_b,
- const int32_t* input_gate_bias_ptr, const int32_t* forget_gate_bias_ptr,
- const int32_t* cell_gate_bias_ptr, const int32_t* output_gate_bias_ptr,
- int16_t quantized_cell_clip, int8_t quantized_proj_clip,
- int32_t cell_state_scale, int32_t input_variance_guard,
- int32_t forget_variance_guard, int32_t cell_variance_guard,
- int32_t output_variance_guard,
- const int32_t* input_to_forget_effective_bias,
- const int32_t* recurrent_to_forget_effective_bias,
- const int32_t* input_to_cell_effective_bias,
- const int32_t* recurrent_to_cell_effective_bias,
- const int32_t* input_to_output_effective_bias,
- const int32_t* recurrent_to_output_effective_bias,
- const int32_t* input_to_input_effective_bias,
- const int32_t* recurrent_to_input_effective_bias,
- const int32_t* projection_effective_bias, int n_batch, int n_cell,
- int n_input, int n_output, int8_t* output_state_ptr,
- int32_t output_state_zp, int16_t* cell_state_ptr, int8_t* output_ptr,
- int16_t* scratch0, int16_t* scratch1, int16_t* scratch2, int16_t* scratch3,
- int8_t* scratch4, int32_t* scratch5) {
- // Make named scratch buffers for the different gates.
- int16_t* input_gate_scratch = scratch0;
- int16_t* forget_gate_scratch = scratch1;
- int16_t* cell_gate_scratch = scratch2;
- int16_t* output_gate_scratch = scratch3;
- // Since we have already checked that weights are all there or none, we
- // can check the existence of only one to the get the condition.
- const bool use_cifg = (input_to_input_weight_ptr == nullptr);
- // Check for nullptrs.
- TFLITE_DCHECK(input_to_forget_effective_bias);
- TFLITE_DCHECK(recurrent_to_forget_effective_bias);
- TFLITE_DCHECK(input_to_cell_effective_bias);
- TFLITE_DCHECK(recurrent_to_cell_effective_bias);
- TFLITE_DCHECK(input_to_output_effective_bias);
- TFLITE_DCHECK(recurrent_to_output_effective_bias);
- if (!use_cifg) {
- TFLITE_DCHECK(input_to_input_effective_bias);
- TFLITE_DCHECK(recurrent_to_input_effective_bias);
- }
- const bool use_projection = (projection_weight_ptr != nullptr);
- if (use_projection) {
- TFLITE_DCHECK(projection_effective_bias);
- }
- if (!use_cifg) {
- // Calculate the input gate. (If not CIFG.)
- CalculateLstmGateInteger8x8_16(
- input_ptr, input_to_input_weight_ptr, input_to_input_effective_bias,
- effective_input_to_input_scale_a, effective_input_to_input_scale_b,
- output_state_ptr, recurrent_to_input_weight_ptr,
- recurrent_to_input_effective_bias, effective_recurrent_to_input_scale_a,
- effective_recurrent_to_input_scale_b, cell_state_ptr,
- cell_to_input_weight_ptr, effective_cell_to_input_scale_a,
- effective_cell_to_input_scale_b, layer_norm_input_weight_ptr,
- input_gate_bias_ptr, layer_norm_input_scale_a, layer_norm_input_scale_b,
- input_variance_guard, n_batch, n_input, n_output, n_cell,
- kTfLiteActSigmoid, input_gate_scratch, scratch5);
- }
- // Calculate the forget gate.
- CalculateLstmGateInteger8x8_16(
- input_ptr, input_to_forget_weight_ptr, input_to_forget_effective_bias,
- effective_input_to_forget_scale_a, effective_input_to_forget_scale_b,
- output_state_ptr, recurrent_to_forget_weight_ptr,
- recurrent_to_forget_effective_bias, effective_recurrent_to_forget_scale_a,
- effective_recurrent_to_forget_scale_b, cell_state_ptr,
- cell_to_forget_weight_ptr, effective_cell_to_forget_scale_a,
- effective_cell_to_forget_scale_b, layer_norm_forget_weight_ptr,
- forget_gate_bias_ptr, layer_norm_forget_scale_a,
- layer_norm_forget_scale_b, forget_variance_guard, n_batch, n_input,
- n_output, n_cell, kTfLiteActSigmoid, forget_gate_scratch, scratch5);
- // Calculate the cell update gate.
- CalculateLstmGateInteger8x8_16(
- input_ptr, input_to_cell_weight_ptr, input_to_cell_effective_bias,
- effective_input_to_cell_scale_a, effective_input_to_cell_scale_b,
- output_state_ptr, recurrent_to_cell_weight_ptr,
- recurrent_to_cell_effective_bias, effective_recurrent_to_cell_scale_a,
- effective_recurrent_to_cell_scale_b, cell_state_ptr,
- /*cell_to_gate_weights=*/nullptr, /*cell_to_gate_scale_a=*/0,
- /*cell_to_gate_scale_b=*/0, layer_norm_cell_weight_ptr,
- cell_gate_bias_ptr, layer_norm_cell_scale_a, layer_norm_cell_scale_b,
- cell_variance_guard, n_batch, n_input, n_output, n_cell, kTfLiteActTanh,
- cell_gate_scratch, scratch5);
- // Update the cell state.
- UpdateLstmCellInteger(n_batch, n_cell, cell_state_ptr, cell_state_scale,
- input_gate_scratch, forget_gate_scratch,
- cell_gate_scratch, use_cifg, quantized_cell_clip);
- // Calculate the output gate.
- CalculateLstmGateInteger8x8_16(
- input_ptr, input_to_output_weight_ptr, input_to_output_effective_bias,
- effective_input_to_output_scale_a, effective_input_to_output_scale_b,
- output_state_ptr, recurrent_to_output_weight_ptr,
- recurrent_to_output_effective_bias, effective_recurrent_to_output_scale_a,
- effective_recurrent_to_output_scale_b, cell_state_ptr,
- cell_to_output_weight_ptr, effective_cell_to_output_scale_a,
- effective_cell_to_output_scale_b, layer_norm_output_weight_ptr,
- output_gate_bias_ptr, layer_norm_output_scale_a,
- layer_norm_output_scale_b, output_variance_guard, n_batch, n_input,
- n_output, n_cell, kTfLiteActSigmoid, output_gate_scratch, scratch5);
- // Update the output state.
- CalculateLstmOutputInteger8x8_16(
- n_batch, n_cell, n_output, cell_state_ptr, cell_state_scale,
- output_gate_scratch, effective_hidden_scale_a, effective_hidden_scale_b,
- hidden_zp, projection_weight_ptr, effective_proj_scale_a,
- effective_proj_scale_b, projection_effective_bias, output_state_zp,
- quantized_proj_clip, output_state_ptr, scratch0, scratch4, scratch5);
- // Copy output state to the output. Note that unlike float or hybrid, output
- // is always contiguous.
- std::memcpy(output_ptr, output_state_ptr,
- n_batch * n_output * sizeof(int8_t));
- }
- // Fully quantized lstm kernel for 8 bit gate matmul output.
- //
- // Input tensor of size n_batch * n_input:
- // input_ptr
- //
- // LSTM weights:
- // Quantized input weights of size 'n_cell * n_input':
- // input_to_input_weight_ptr - optional
- // input_to_forget_weight_ptr - optional
- // input_to_cell_weight_ptr - optional
- // input_to_output_weight_ptr - optional
- //
- // Quantized recurrent weights of size 'n_cell * n_output':
- // recurrent_to_input_weight_ptr - optional
- // recurrent_to_forget_weights_ptr
- // recurrent_to_cell_weights_ptr
- // recurrent_to_input_weights_ptr
- //
- // Quantized peephole weights of size 'n_cell', representing diagonal matrices.
- // cell_to_input_weights - optional
- // cell_to_cell_weights - optional
- // cell_to_output_weights - optional
- //
- // Quantized projection weights of size 'n_output * n_cell'
- // projection_weight_ptr - optional
- //
- // Weight scales (scalars) for each of the weights above.
- // effective_input_to_input_scale_a - optional
- // effective_input_to_input_scale_b - optional
- // effective_input_to_forget_scale_a
- // effective_input_to_forget_scale_b
- // effective_input_to_cell_scale_a
- // effective_input_to_cell_scale_b
- // effective_input_to_output_scale_a
- // effective_input_to_output_scale_b
- // effective_recurrent_to_input_scale_a - optional
- // effective_recurrent_to_input_scale_b - optional
- // effective_recurrent_to_forget_scale_a
- // effective_recurrent_to_forget_scale_b
- // effective_recurrent_to_cell_scale_a
- // effective_recurrent_to_cell_scale_b
- // effective_recurrent_to_output_scale_a
- // effective_recurrent_to_output_scale_b
- // effective_proj_scale_a - optional
- // effective_proj_scale_b - optional
- //
- // Gate biases of size 'n_cell':
- // input_gate_bias_ptr - optional
- // forget_gate_bias_ptr
- // cell_gate_bias_ptr
- // output_gate_bias_ptr
- //
- // Layer norm coefficients of size 'n_cell', representing diagonal matrices.
- // layer_norm_input_weight_ptr - optional
- // layer_norm_forget_weight_ptr - optional
- // layer_norm_cell_weight_ptr - optional
- // layer_norm_output_weight_ptr - optional
- //
- // Layer norm scales of size 'n_cell'.
- // layer_norm_input_scale_a - optional
- // layer_norm_input_scale_b - optional
- // layer_norm_forget_scale_a - optional
- // layer_norm_forget_scale_b - optional
- // layer_norm_cell_scale_a - optional
- // layer_norm_cell_scale_b - optional
- // layer_norm_output_scale_a - optional
- // layer_norm_output_scale_b - optional
- //
- // Scalar values:
- // quantized_cell_clip: quantized clip value for cell.
- // quantized_proj_clip: quantized clip value for projection.
- // cell_state_scale: the power of two scale for cell state.
- //
- // Zero points:
- // input_zp: zero point for input tensor.
- // output_state_zp: zero point of output state.
- // hidden_zp: zero point for hidden state.
- //
- // Temporary pre-allocated storage for the calculation. Each is of size n_cell *
- // n_batch.
- // scratch0
- // scratch1
- // scratch2
- // scratch3
- // scratch4
- // scratch5
- // scratch6
- // scratch7
- //
- // Outputs:
- // output_state_ptr - size 'n_batch * n_output'
- // cell_state_ptr - size 'n_batch * n_cell'
- // output_ptr - size 'n_batch * n_output'
- //
- // Can move zero point calculation into Prepare() for better perfomance.
- // TODO(b/159947023): scratch5 is unused, remove.
- inline void LstmStepInteger8x8_8(
- const int8_t* input_ptr, int32_t input_zp,
- const int8_t* input_to_input_weight_ptr,
- int32_t effective_input_to_input_scale_a,
- int32_t effective_input_to_input_scale_b,
- const int8_t* input_to_forget_weight_ptr,
- int32_t effective_input_to_forget_scale_a,
- int32_t effective_input_to_forget_scale_b,
- const int8_t* input_to_cell_weight_ptr,
- int32_t effective_input_to_cell_scale_a,
- int32_t effective_input_to_cell_scale_b,
- const int8_t* input_to_output_weight_ptr,
- int32_t effective_input_to_output_scale_a,
- int32_t effective_input_to_output_scale_b,
- const int8_t* recurrent_to_input_weight_ptr,
- int32_t effective_recurrent_to_input_scale_a,
- int32_t effective_recurrent_to_input_scale_b,
- const int8_t* recurrent_to_forget_weight_ptr,
- int32_t effective_recurrent_to_forget_scale_a,
- int32_t effective_recurrent_to_forget_scale_b,
- const int8_t* recurrent_to_cell_weight_ptr,
- int32_t effective_recurrent_to_cell_scale_a,
- int32_t effective_recurrent_to_cell_scale_b,
- const int8_t* recurrent_to_output_weight_ptr,
- int32_t effective_recurrent_to_output_scale_a,
- int32_t effective_recurrent_to_output_scale_b,
- const int8_t* cell_to_input_weight_ptr,
- int32_t effective_cell_to_input_scale_a,
- int32_t effective_cell_to_input_scale_b,
- const int8_t* cell_to_forget_weight_ptr,
- int32_t effective_cell_to_forget_scale_a,
- int32_t effective_cell_to_forget_scale_b,
- const int8_t* cell_to_output_weight_ptr,
- int32_t effective_cell_to_output_scale_a,
- int32_t effective_cell_to_output_scale_b,
- const int8_t* projection_weight_ptr, int32_t effective_proj_scale_a,
- int32_t effective_proj_scale_b, const int16_t* layer_norm_input_weight_ptr,
- int32_t layer_norm_input_scale_a, int32_t layer_norm_input_scale_b,
- const int16_t* layer_norm_forget_weight_ptr,
- int32_t layer_norm_forget_scale_a, int32_t layer_norm_forget_scale_b,
- const int16_t* layer_norm_cell_weight_ptr, int32_t layer_norm_cell_scale_a,
- int32_t layer_norm_cell_scale_b,
- const int16_t* layer_norm_output_weight_ptr,
- int32_t layer_norm_output_scale_a, int32_t layer_norm_output_scale_b,
- const int32_t* input_gate_bias_ptr, const int32_t* forget_gate_bias_ptr,
- const int32_t* cell_gate_bias_ptr, const int32_t* output_gate_bias_ptr,
- const int32_t* projection_bias_ptr, const TfLiteLSTMParams* params,
- const int32_t* intermediate_scale_a, const int32_t* intermediate_scale_b,
- const int32_t* intermediate_zp, int16_t quantized_cell_clip,
- int8_t quantized_proj_clip, int n_batch, int n_cell, int n_input,
- int n_output, int output_batch_leading_dim, int8_t* output_state_ptr,
- int32_t output_state_zp, int16_t* cell_state_ptr, int8_t* output_ptr,
- int8_t* scratch0, int8_t* scratch1, int16_t* scratch2, int16_t* scratch3,
- int16_t* scratch4, int16_t* scratch5, int16_t* scratch6,
- int16_t* scratch7) {
- // TODO(b/159066113): scratch5 is unused, remove.
- // Make named scratch buffers for the different gates.
- int16_t* forget_gate_scratch = scratch2;
- int16_t* cell_gate_scratch = scratch3;
- int16_t* output_gate_scratch = scratch4;
- // no-CIFG is not supported here
- // Calculate the forget gate.
- CalculateLstmGateInteger8x8_8(
- input_ptr, input_zp, input_to_forget_weight_ptr,
- effective_input_to_forget_scale_a, effective_input_to_forget_scale_b,
- intermediate_scale_a[2], intermediate_scale_b[2], intermediate_zp[4],
- output_state_ptr, output_state_zp, recurrent_to_forget_weight_ptr,
- effective_recurrent_to_forget_scale_a,
- effective_recurrent_to_forget_scale_b, intermediate_scale_a[3],
- intermediate_scale_b[3], intermediate_zp[5], layer_norm_forget_weight_ptr,
- layer_norm_forget_scale_a, layer_norm_forget_scale_b,
- forget_gate_bias_ptr, n_batch, n_input, n_output, n_cell,
- kTfLiteActSigmoid, forget_gate_scratch, scratch0, scratch1);
- // Calculate the cell update gate.
- CalculateLstmGateInteger8x8_8(
- input_ptr, input_zp, input_to_cell_weight_ptr,
- effective_input_to_cell_scale_a, effective_input_to_cell_scale_b,
- intermediate_scale_a[4], intermediate_scale_b[4], intermediate_zp[7],
- output_state_ptr, output_state_zp, recurrent_to_cell_weight_ptr,
- effective_recurrent_to_cell_scale_a, effective_recurrent_to_cell_scale_b,
- intermediate_scale_a[5], intermediate_scale_b[5], intermediate_zp[8],
- layer_norm_cell_weight_ptr, layer_norm_cell_scale_a,
- layer_norm_cell_scale_b, cell_gate_bias_ptr, n_batch, n_input, n_output,
- n_cell, kTfLiteActTanh, cell_gate_scratch, scratch0, scratch1);
- // Update the cell state.
- UpdateLstmCellInteger(n_batch, n_cell, cell_state_ptr,
- /*cell_state_scale=*/-15, /*input_gate=*/nullptr,
- forget_gate_scratch, cell_gate_scratch,
- /*use_cifg=*/true, quantized_cell_clip);
- // Calculate the output gate.
- CalculateLstmGateInteger8x8_8(
- input_ptr, input_zp, input_to_output_weight_ptr,
- effective_input_to_output_scale_a, effective_input_to_output_scale_b,
- intermediate_scale_a[6], intermediate_scale_b[6], intermediate_zp[10],
- output_state_ptr, output_state_zp, recurrent_to_output_weight_ptr,
- effective_recurrent_to_output_scale_a,
- effective_recurrent_to_output_scale_b, intermediate_scale_a[11],
- intermediate_scale_b[7], intermediate_zp[7], layer_norm_output_weight_ptr,
- layer_norm_output_scale_a, layer_norm_output_scale_b,
- output_gate_bias_ptr, n_batch, n_input, n_output, n_cell,
- kTfLiteActSigmoid, output_gate_scratch, scratch0, scratch1);
- // Update the output state.
- CalculateLstmOutputInteger8x8_8(
- n_batch, n_cell, n_output, cell_state_ptr, output_gate_scratch,
- projection_weight_ptr, effective_proj_scale_a, effective_proj_scale_b,
- projection_bias_ptr, output_state_zp, quantized_proj_clip,
- output_state_ptr, scratch2);
- // Copy output state to the output. Note that unlike float or hybrid, output
- // is always contigous.
- std::memcpy(output_ptr, output_state_ptr,
- n_batch * n_output * sizeof(int8_t));
- }
- } // namespace
- TfLiteStatus EvalFloatLstm(
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* input_to_input_weights,
- const TfLiteEvalTensor* input_to_forget_weights,
- const TfLiteEvalTensor* input_to_cell_weights,
- const TfLiteEvalTensor* input_to_output_weights,
- const TfLiteEvalTensor* recurrent_to_input_weights,
- const TfLiteEvalTensor* recurrent_to_forget_weights,
- const TfLiteEvalTensor* recurrent_to_cell_weights,
- const TfLiteEvalTensor* recurrent_to_output_weights,
- const TfLiteEvalTensor* cell_to_input_weights,
- const TfLiteEvalTensor* cell_to_forget_weights,
- const TfLiteEvalTensor* cell_to_output_weights,
- const TfLiteEvalTensor* input_layer_norm_coefficients,
- const TfLiteEvalTensor* forget_layer_norm_coefficients,
- const TfLiteEvalTensor* cell_layer_norm_coefficients,
- const TfLiteEvalTensor* output_layer_norm_coefficients,
- const TfLiteEvalTensor* aux_input,
- const TfLiteEvalTensor* aux_input_to_input_weights,
- const TfLiteEvalTensor* aux_input_to_forget_weights,
- const TfLiteEvalTensor* aux_input_to_cell_weights,
- const TfLiteEvalTensor* aux_input_to_output_weights,
- const TfLiteEvalTensor* input_gate_bias,
- const TfLiteEvalTensor* forget_gate_bias,
- const TfLiteEvalTensor* cell_gate_bias,
- const TfLiteEvalTensor* output_gate_bias,
- const TfLiteEvalTensor* projection_weights,
- const TfLiteEvalTensor* projection_bias, const TfLiteLSTMParams* params,
- bool forward_sequence, bool time_major, int output_offset,
- float* scratch_buffer, TfLiteEvalTensor* output_state,
- TfLiteEvalTensor* cell_state, TfLiteEvalTensor* output) {
- TFLITE_DCHECK(input->dims->size >= 2 && input->dims->size <= 3);
- int max_time, n_batch;
- if (input->dims->size == 3) {
- max_time = (time_major) ? input->dims->data[0] : input->dims->data[1];
- n_batch = (time_major) ? input->dims->data[1] : input->dims->data[0];
- } else {
- max_time = 1;
- n_batch = input->dims->data[0];
- }
- const int n_input = input->dims->data[input->dims->size - 1];
- const int aux_input_size =
- (aux_input) ? aux_input->dims->data[aux_input->dims->size - 1] : 0;
- // n_cell and n_output will be the same size when there is no projection.
- const int n_cell = input_to_output_weights->dims->data[0];
- const int n_output = recurrent_to_output_weights->dims->data[1];
- // Since we have already checked that weights are all there or none, we can
- // check the existence of only one to the get the condition.
- const bool use_cifg = (input_to_input_weights == nullptr);
- // Index the scratch buffers pointers to the global scratch buffer.
- float* input_gate_scratch = nullptr;
- float* cell_gate_scratch = nullptr;
- float* forget_gate_scratch = nullptr;
- float* output_gate_scratch = nullptr;
- if (use_cifg) {
- cell_gate_scratch = scratch_buffer;
- forget_gate_scratch = scratch_buffer + n_cell * n_batch;
- output_gate_scratch = scratch_buffer + 2 * n_cell * n_batch;
- } else {
- input_gate_scratch = scratch_buffer;
- cell_gate_scratch = scratch_buffer + n_cell * n_batch;
- forget_gate_scratch = scratch_buffer + 2 * n_cell * n_batch;
- output_gate_scratch = scratch_buffer + 3 * n_cell * n_batch;
- }
- const int output_batch_leading_dim =
- output->dims->data[output->dims->size - 1];
- if (time_major) {
- // Loop through the sequence.
- const int input_step = n_batch * n_input;
- const int output_step = n_batch * output_batch_leading_dim;
- for (int t = 0; t < max_time; t++) {
- // If this is the forward_sequence, step forward, otherwise step
- // backwards.
- const int t_rel = forward_sequence ? t : max_time - t - 1;
- const float* input_ptr =
- tflite::micro::GetTensorData<float>(input) + t_rel * input_step;
- const float* aux_input_ptr = nullptr;
- if (aux_input) {
- aux_input_ptr =
- tflite::micro::GetTensorData<float>(aux_input) + t_rel * input_step;
- }
- float* output_ptr = tflite::micro::GetTensorData<float>(output) +
- t_rel * output_step + output_offset;
- LstmStepFloat(
- input_ptr,
- input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_input_weights),
- input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_forget_weights),
- input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_cell_weights),
- input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_output_weights),
- aux_input_ptr,
- aux_input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(aux_input_to_input_weights),
- aux_input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- aux_input_to_forget_weights),
- aux_input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(aux_input_to_cell_weights),
- aux_input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- aux_input_to_output_weights),
- recurrent_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(recurrent_to_input_weights),
- recurrent_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- recurrent_to_forget_weights),
- recurrent_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(recurrent_to_cell_weights),
- recurrent_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- recurrent_to_output_weights),
- cell_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_to_input_weights),
- cell_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_to_forget_weights),
- cell_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_to_output_weights),
- input_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- input_layer_norm_coefficients),
- forget_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- forget_layer_norm_coefficients),
- cell_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- cell_layer_norm_coefficients),
- output_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- output_layer_norm_coefficients),
- input_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_gate_bias),
- forget_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(forget_gate_bias),
- cell_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_gate_bias),
- output_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(output_gate_bias),
- projection_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(projection_weights),
- projection_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(projection_bias),
- params, n_batch, n_cell, n_input, aux_input_size, n_output,
- output_batch_leading_dim,
- tflite::micro::GetTensorData<float>(output_state),
- tflite::micro::GetTensorData<float>(cell_state), input_gate_scratch,
- forget_gate_scratch, cell_gate_scratch, output_gate_scratch,
- output_ptr);
- }
- } else {
- for (int b = 0; b < n_batch; b++) {
- const int input_step = n_input;
- const int output_step = output_batch_leading_dim;
- for (int t = 0; t < max_time; t++) {
- // If this is the forward_sequence, step forward, otherwise step
- // backwards.
- const int t_rel = forward_sequence ? t : max_time - t - 1;
- const int time_offset = b * max_time + t_rel;
- const float* input_ptr = tflite::micro::GetTensorData<float>(input) +
- time_offset * input_step;
- const float* aux_input_ptr = nullptr;
- if (aux_input) {
- aux_input_ptr = tflite::micro::GetTensorData<float>(aux_input) +
- time_offset * input_step;
- }
- float* output_ptr = tflite::micro::GetTensorData<float>(output) +
- time_offset * output_step + output_offset;
- // Offset the {output,cell}_state pointers to the right batch.
- float* output_state_ptr =
- tflite::micro::GetTensorData<float>(output_state) +
- b * output_batch_leading_dim;
- float* cell_state_ptr =
- tflite::micro::GetTensorData<float>(cell_state) + b * n_cell;
- // Offset the scratch pointers to the right batch.
- float* input_gate_scratch_ptr =
- input_gate_scratch ? input_gate_scratch + b * n_cell : nullptr;
- float* forget_gate_scratch_ptr = forget_gate_scratch + b * n_cell;
- float* cell_gate_scratch_ptr = cell_gate_scratch + b * n_cell;
- float* output_gate_scratch_ptr = output_gate_scratch + b * n_cell;
- LstmStepFloat(
- input_ptr,
- input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_input_weights),
- input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_forget_weights),
- input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_cell_weights),
- input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_to_output_weights),
- aux_input_ptr,
- aux_input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- aux_input_to_input_weights),
- aux_input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- aux_input_to_forget_weights),
- aux_input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- aux_input_to_cell_weights),
- aux_input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- aux_input_to_output_weights),
- recurrent_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- recurrent_to_input_weights),
- recurrent_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- recurrent_to_forget_weights),
- recurrent_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- recurrent_to_cell_weights),
- recurrent_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- recurrent_to_output_weights),
- cell_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_to_input_weights),
- cell_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_to_forget_weights),
- cell_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_to_output_weights),
- input_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- input_layer_norm_coefficients),
- forget_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- forget_layer_norm_coefficients),
- cell_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- cell_layer_norm_coefficients),
- output_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- output_layer_norm_coefficients),
- input_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_gate_bias),
- forget_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(forget_gate_bias),
- cell_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_gate_bias),
- output_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(output_gate_bias),
- projection_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(projection_weights),
- projection_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(projection_bias),
- params,
- /*n_batch=*/1, n_cell, n_input, aux_input_size, n_output,
- output_batch_leading_dim, output_state_ptr, cell_state_ptr,
- input_gate_scratch_ptr, forget_gate_scratch_ptr,
- cell_gate_scratch_ptr, output_gate_scratch_ptr, output_ptr);
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus EvalHybridLstm(
- const HybridLstmScales* hybrid_lstm_scales, const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* input_to_input_weights,
- const TfLiteEvalTensor* input_to_input_weights_ledger,
- const TfLiteEvalTensor* input_to_forget_weights,
- const TfLiteEvalTensor* input_to_forget_weights_ledger,
- const TfLiteEvalTensor* input_to_cell_weights,
- const TfLiteEvalTensor* input_to_cell_weights_ledger,
- const TfLiteEvalTensor* input_to_output_weights,
- const TfLiteEvalTensor* input_to_output_weights_ledger,
- const TfLiteEvalTensor* recurrent_to_input_weights,
- const TfLiteEvalTensor* recurrent_to_input_weights_ledger,
- const TfLiteEvalTensor* recurrent_to_forget_weights,
- const TfLiteEvalTensor* recurrent_to_forget_weights_ledger,
- const TfLiteEvalTensor* recurrent_to_cell_weights,
- const TfLiteEvalTensor* recurrent_to_cell_weights_ledger,
- const TfLiteEvalTensor* recurrent_to_output_weights,
- const TfLiteEvalTensor* recurrent_to_output_weights_ledger,
- const TfLiteEvalTensor* cell_to_input_weights,
- const TfLiteEvalTensor* cell_to_forget_weights,
- const TfLiteEvalTensor* cell_to_output_weights,
- const TfLiteEvalTensor* input_layer_norm_coefficients,
- const TfLiteEvalTensor* forget_layer_norm_coefficients,
- const TfLiteEvalTensor* cell_layer_norm_coefficients,
- const TfLiteEvalTensor* output_layer_norm_coefficients,
- const TfLiteEvalTensor* aux_input,
- const TfLiteEvalTensor* aux_input_to_input_weights,
- const TfLiteEvalTensor* aux_input_to_forget_weights,
- const TfLiteEvalTensor* aux_input_to_cell_weights,
- const TfLiteEvalTensor* aux_input_to_output_weights,
- const TfLiteEvalTensor* input_gate_bias,
- const TfLiteEvalTensor* forget_gate_bias,
- const TfLiteEvalTensor* cell_gate_bias,
- const TfLiteEvalTensor* output_gate_bias,
- const TfLiteEvalTensor* projection_weights,
- const TfLiteEvalTensor* projection_weights_ledger,
- const TfLiteEvalTensor* projection_bias, const TfLiteLSTMParams* params,
- bool forward_sequence, bool time_major, int output_offset,
- float* scratch_buffer, float* input_sf, float* aux_input_sf,
- float* output_state_sf, float* prod_scaling_factors,
- float* recovered_cell_weights, int8_t* input_quantized,
- int8_t* aux_input_quantized, int8_t* output_state_quantized,
- int8_t* cell_state_quantized, float* scales, TfLiteEvalTensor* output_state,
- TfLiteEvalTensor* cell_state, int32_t* output_scratch_buffer,
- TfLiteEvalTensor* output, int32_t* input_zp, int32_t* aux_input_zp,
- int32_t* output_state_zp, int32_t* row_sums, int row_sums_size,
- bool* compute_row_sums) {
- TFLITE_DCHECK(input->dims->size >= 2 && input->dims->size <= 3);
- const int n_input = input->dims->data[input->dims->size - 1];
- int max_time, n_batch;
- if (input->dims->size == 2) {
- max_time = 1;
- n_batch = input->dims->data[0];
- } else {
- max_time = (time_major) ? input->dims->data[0] : input->dims->data[1];
- n_batch = (time_major) ? input->dims->data[1] : input->dims->data[0];
- }
- const int aux_input_size =
- (aux_input) ? aux_input->dims->data[aux_input->dims->size - 1] : 0;
- // n_cell and n_output will be the same size when there is no projection.
- const int n_cell = input_to_output_weights->dims->data[0];
- const int n_output = recurrent_to_output_weights->dims->data[1];
- // Since we have already checked that weights are all there or none, we can
- // check the existence of only one to get the condition.
- const bool use_cifg = (input_to_input_weights == nullptr);
- float* input_gate_scratch = nullptr;
- float* cell_gate_scratch = nullptr;
- float* forget_gate_scratch = nullptr;
- float* output_gate_scratch = nullptr;
- if (use_cifg) {
- cell_gate_scratch = scratch_buffer;
- forget_gate_scratch = scratch_buffer + n_cell * n_batch;
- output_gate_scratch = scratch_buffer + 2 * n_cell * n_batch;
- } else {
- input_gate_scratch = scratch_buffer;
- cell_gate_scratch = scratch_buffer + n_cell * n_batch;
- forget_gate_scratch = scratch_buffer + 2 * n_cell * n_batch;
- output_gate_scratch = scratch_buffer + 3 * n_cell * n_batch;
- }
- const int output_batch_leading_dim =
- output->dims->data[output->dims->size - 1];
- int32_t* input_zp_ptr = nullptr;
- int32_t* aux_input_zp_ptr = nullptr;
- int32_t* output_state_zp_ptr = nullptr;
- int32_t* row_sums_ptr = nullptr;
- if (params->asymmetric_quantize_inputs) {
- input_zp_ptr = input_zp;
- aux_input_zp_ptr = aux_input_zp;
- output_state_zp_ptr = output_state_zp;
- row_sums_ptr = row_sums;
- }
- if (time_major) {
- // Feed the sequence into the LSTM step-by-step.
- const int input_step = n_batch * n_input;
- const int output_step = n_batch * output_batch_leading_dim;
- for (int t = 0; t < max_time; t++) {
- // If this is the forward_sequence, step forward, otherwise step
- // backwards.
- const int t_rel = forward_sequence ? t : max_time - t - 1;
- const float* input_ptr =
- tflite::micro::GetTensorData<float>(input) + t_rel * input_step;
- const float* aux_input_ptr = nullptr;
- if (aux_input) {
- aux_input_ptr =
- tflite::micro::GetTensorData<float>(aux_input) + t_rel * input_step;
- }
- float* output_ptr = tflite::micro::GetTensorData<float>(output) +
- t_rel * output_step + output_offset;
- LstmStepHybrid(
- input_ptr,
- input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_input_weights),
- input_to_input_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_input_weights_ledger),
- hybrid_lstm_scales->input_to_input_weights_scale,
- input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_forget_weights),
- input_to_forget_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_forget_weights_ledger),
- hybrid_lstm_scales->input_to_forget_weights_scale,
- input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_cell_weights),
- input_to_cell_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_cell_weights_ledger),
- hybrid_lstm_scales->input_to_cell_weights_scale,
- input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_output_weights),
- input_to_output_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_output_weights_ledger),
- hybrid_lstm_scales->input_to_output_weights_scale, aux_input_ptr,
- aux_input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- aux_input_to_input_weights),
- hybrid_lstm_scales->aux_input_to_input_weights_scale,
- aux_input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- aux_input_to_forget_weights),
- hybrid_lstm_scales->aux_input_to_forget_weights_scale,
- aux_input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(aux_input_to_cell_weights),
- hybrid_lstm_scales->aux_input_to_cell_weights_scale,
- aux_input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- aux_input_to_output_weights),
- hybrid_lstm_scales->aux_input_to_output_weights_scale,
- recurrent_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_input_weights),
- recurrent_to_input_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_input_weights_ledger),
- hybrid_lstm_scales->recurrent_to_input_weights_scale,
- recurrent_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_forget_weights),
- recurrent_to_forget_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_forget_weights_ledger),
- hybrid_lstm_scales->recurrent_to_forget_weights_scale,
- recurrent_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(recurrent_to_cell_weights),
- recurrent_to_cell_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_cell_weights_ledger),
- hybrid_lstm_scales->recurrent_to_cell_weights_scale,
- recurrent_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_output_weights),
- recurrent_to_output_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_output_weights_ledger),
- hybrid_lstm_scales->recurrent_to_output_weights_scale,
- cell_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_input_weights),
- hybrid_lstm_scales->cell_to_input_weights_scale,
- cell_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_forget_weights),
- hybrid_lstm_scales->cell_to_forget_weights_scale,
- cell_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_output_weights),
- hybrid_lstm_scales->cell_to_output_weights_scale,
- input_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- input_layer_norm_coefficients),
- forget_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- forget_layer_norm_coefficients),
- cell_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- cell_layer_norm_coefficients),
- output_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- output_layer_norm_coefficients),
- input_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_gate_bias),
- forget_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(forget_gate_bias),
- cell_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_gate_bias),
- output_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(output_gate_bias),
- projection_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(projection_weights),
- projection_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- projection_weights_ledger),
- hybrid_lstm_scales->projection_weights_scale,
- projection_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(projection_bias),
- params, n_batch, n_cell, n_input, aux_input_size, n_output,
- output_batch_leading_dim, input_gate_scratch, forget_gate_scratch,
- cell_gate_scratch, output_gate_scratch, scales, input_sf,
- aux_input_sf, output_state_sf, prod_scaling_factors,
- recovered_cell_weights, input_quantized, aux_input_quantized,
- output_state_quantized, cell_state_quantized,
- tflite::micro::GetTensorData<float>(output_state),
- tflite::micro::GetTensorData<float>(cell_state),
- output_scratch_buffer, output_ptr, input_zp_ptr, aux_input_zp_ptr,
- output_state_zp_ptr, row_sums_ptr, row_sums_size, compute_row_sums,
- params->asymmetric_quantize_inputs);
- }
- } else {
- for (int b = 0; b < n_batch; b++) {
- const int input_step = n_input;
- const int output_step = output_batch_leading_dim;
- for (int t = 0; t < max_time; t++) {
- // If this is the forward_sequence, step forward, otherwise step
- // backwards.
- const int t_rel = forward_sequence ? t : max_time - t - 1;
- const int time_offset = b * max_time + t_rel;
- const float* input_ptr = tflite::micro::GetTensorData<float>(input) +
- time_offset * input_step;
- const float* aux_input_ptr = nullptr;
- if (aux_input) {
- aux_input_ptr = tflite::micro::GetTensorData<float>(aux_input) +
- time_offset * input_step;
- }
- float* output_ptr = tflite::micro::GetTensorData<float>(output) +
- time_offset * output_step + output_offset;
- // Offset the {output,cell}_state pointers to the right batch.
- float* output_state_ptr =
- tflite::micro::GetTensorData<float>(output_state) +
- b * output_batch_leading_dim;
- float* cell_state_ptr =
- tflite::micro::GetTensorData<float>(cell_state) + b * n_cell;
- // Offset the scratch pointers to the right batch.
- float* input_gate_scratch_ptr =
- input_gate_scratch ? input_gate_scratch + b * n_cell : nullptr;
- float* forget_gate_scratch_ptr = forget_gate_scratch + b * n_cell;
- float* cell_gate_scratch_ptr = cell_gate_scratch + b * n_cell;
- float* output_gate_scratch_ptr = output_gate_scratch + b * n_cell;
- LstmStepHybrid(
- input_ptr,
- input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_input_weights),
- input_to_input_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_input_weights_ledger),
- hybrid_lstm_scales->input_to_input_weights_scale,
- input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_forget_weights),
- input_to_forget_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_forget_weights_ledger),
- hybrid_lstm_scales->input_to_forget_weights_scale,
- input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_cell_weights),
- input_to_cell_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_cell_weights_ledger),
- hybrid_lstm_scales->input_to_cell_weights_scale,
- input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_output_weights),
- input_to_output_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- input_to_output_weights_ledger),
- hybrid_lstm_scales->input_to_output_weights_scale, aux_input_ptr,
- aux_input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- aux_input_to_input_weights),
- hybrid_lstm_scales->aux_input_to_input_weights_scale,
- aux_input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- aux_input_to_forget_weights),
- hybrid_lstm_scales->aux_input_to_forget_weights_scale,
- aux_input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- aux_input_to_cell_weights),
- hybrid_lstm_scales->aux_input_to_cell_weights_scale,
- aux_input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- aux_input_to_output_weights),
- hybrid_lstm_scales->aux_input_to_output_weights_scale,
- recurrent_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_input_weights),
- recurrent_to_input_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_input_weights_ledger),
- hybrid_lstm_scales->recurrent_to_input_weights_scale,
- recurrent_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_forget_weights),
- recurrent_to_forget_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_forget_weights_ledger),
- hybrid_lstm_scales->recurrent_to_forget_weights_scale,
- recurrent_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_cell_weights),
- recurrent_to_cell_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_cell_weights_ledger),
- hybrid_lstm_scales->recurrent_to_cell_weights_scale,
- recurrent_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_output_weights),
- recurrent_to_output_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- recurrent_to_output_weights_ledger),
- hybrid_lstm_scales->recurrent_to_output_weights_scale,
- cell_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_input_weights),
- hybrid_lstm_scales->cell_to_input_weights_scale,
- cell_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_forget_weights),
- hybrid_lstm_scales->cell_to_forget_weights_scale,
- cell_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_output_weights),
- hybrid_lstm_scales->cell_to_output_weights_scale,
- input_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- input_layer_norm_coefficients),
- forget_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- forget_layer_norm_coefficients),
- cell_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- cell_layer_norm_coefficients),
- output_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(
- output_layer_norm_coefficients),
- input_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(input_gate_bias),
- forget_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(forget_gate_bias),
- cell_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(cell_gate_bias),
- output_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(output_gate_bias),
- projection_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(projection_weights),
- projection_weights_ledger == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<uint8_t>(
- projection_weights_ledger),
- hybrid_lstm_scales->projection_weights_scale,
- projection_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<float>(projection_bias),
- params,
- /*n_batch=*/1, n_cell, n_input, aux_input_size, n_output,
- output_batch_leading_dim, input_gate_scratch_ptr,
- forget_gate_scratch_ptr, cell_gate_scratch_ptr,
- output_gate_scratch_ptr, scales, input_sf, aux_input_sf,
- output_state_sf, prod_scaling_factors, recovered_cell_weights,
- input_quantized, aux_input_quantized, output_state_quantized,
- cell_state_quantized, output_state_ptr, cell_state_ptr,
- output_scratch_buffer, output_ptr, input_zp_ptr, aux_input_zp_ptr,
- output_state_zp_ptr, row_sums_ptr, row_sums_size, compute_row_sums,
- params->asymmetric_quantize_inputs);
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus EvalInteger8x8_16Lstm(
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* input_to_input_weights,
- const TfLiteEvalTensor* input_to_forget_weights,
- const TfLiteEvalTensor* input_to_cell_weights,
- const TfLiteEvalTensor* input_to_output_weights,
- const TfLiteEvalTensor* recurrent_to_input_weights,
- const TfLiteEvalTensor* recurrent_to_forget_weights,
- const TfLiteEvalTensor* recurrent_to_cell_weights,
- const TfLiteEvalTensor* recurrent_to_output_weights,
- const TfLiteEvalTensor* cell_to_input_weights,
- const TfLiteEvalTensor* cell_to_forget_weights,
- const TfLiteEvalTensor* cell_to_output_weights,
- const TfLiteEvalTensor* input_layer_norm_coefficients,
- const TfLiteEvalTensor* forget_layer_norm_coefficients,
- const TfLiteEvalTensor* cell_layer_norm_coefficients,
- const TfLiteEvalTensor* output_layer_norm_coefficients,
- const TfLiteEvalTensor* input_gate_bias,
- const TfLiteEvalTensor* forget_gate_bias,
- const TfLiteEvalTensor* cell_gate_bias,
- const TfLiteEvalTensor* output_gate_bias,
- const TfLiteEvalTensor* projection_weights,
- const TfLiteEvalTensor* projection_bias, const TfLiteLSTMParams* params,
- bool forward_sequence, bool time_major,
- const IntegerLstmParameter* integer_lstm_param, int32_t output_state_zp,
- TfLiteEvalTensor* output_state, TfLiteEvalTensor* cell_state,
- TfLiteEvalTensor* output, int16_t* scratch0, int16_t* scratch1,
- int16_t* scratch2, int16_t* scratch3, int8_t* scratch4, int32_t* scratch5) {
- TFLITE_DCHECK(input->dims->size >= 2 && input->dims->size <= 3);
- const int n_input = input->dims->data[input->dims->size - 1];
- int max_time, n_batch;
- if (input->dims->size == 2) {
- max_time = 1;
- n_batch = input->dims->data[0];
- } else {
- max_time = (time_major) ? input->dims->data[0] : input->dims->data[1];
- n_batch = (time_major) ? input->dims->data[1] : input->dims->data[0];
- }
- // n_cell and n_output will be the same size when there is no projection.
- const int n_cell = input_to_output_weights->dims->data[0];
- const int n_output = recurrent_to_output_weights->dims->data[1];
- // Get params for time/batch/sequence.
- const int output_batch_leading_dim =
- output->dims->data[output->dims->size - 1];
- if (time_major) {
- const int input_step = n_batch * n_input;
- const int output_step = n_batch * output_batch_leading_dim;
- for (int t = 0; t < max_time; t++) {
- const int t_rel = t;
- int8_t* output_ptr =
- tflite::micro::GetTensorData<int8_t>(output) + t_rel * output_step;
- const int8_t* input_ptr =
- tflite::micro::GetTensorData<int8_t>(input) + t_rel * input_step;
- LstmStepInteger8x8_16(
- input_ptr,
- input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_input_weights),
- integer_lstm_param->effective_input_to_input_scale_a,
- integer_lstm_param->effective_input_to_input_scale_b,
- input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_forget_weights),
- integer_lstm_param->effective_input_to_forget_scale_a,
- integer_lstm_param->effective_input_to_forget_scale_b,
- input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_cell_weights),
- integer_lstm_param->effective_input_to_cell_scale_a,
- integer_lstm_param->effective_input_to_cell_scale_b,
- input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_output_weights),
- integer_lstm_param->effective_input_to_output_scale_a,
- integer_lstm_param->effective_input_to_output_scale_b,
- recurrent_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_input_weights),
- integer_lstm_param->effective_recurrent_to_input_scale_a,
- integer_lstm_param->effective_recurrent_to_input_scale_b,
- recurrent_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_forget_weights),
- integer_lstm_param->effective_recurrent_to_forget_scale_a,
- integer_lstm_param->effective_recurrent_to_forget_scale_b,
- recurrent_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(recurrent_to_cell_weights),
- integer_lstm_param->effective_recurrent_to_cell_scale_a,
- integer_lstm_param->effective_recurrent_to_cell_scale_b,
- recurrent_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_output_weights),
- integer_lstm_param->effective_recurrent_to_output_scale_a,
- integer_lstm_param->effective_recurrent_to_output_scale_b,
- cell_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(cell_to_input_weights),
- integer_lstm_param->effective_cell_to_input_scale_a,
- integer_lstm_param->effective_cell_to_input_scale_b,
- cell_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(cell_to_forget_weights),
- integer_lstm_param->effective_cell_to_forget_scale_a,
- integer_lstm_param->effective_cell_to_forget_scale_b,
- cell_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(cell_to_output_weights),
- integer_lstm_param->effective_cell_to_output_scale_a,
- integer_lstm_param->effective_cell_to_output_scale_b,
- projection_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(projection_weights),
- integer_lstm_param->effective_proj_scale_a,
- integer_lstm_param->effective_proj_scale_b,
- integer_lstm_param->hidden_zp,
- integer_lstm_param->effective_hidden_scale_a,
- integer_lstm_param->effective_hidden_scale_b,
- input_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- input_layer_norm_coefficients),
- integer_lstm_param->layer_norm_input_scale_a,
- integer_lstm_param->layer_norm_input_scale_b,
- forget_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- forget_layer_norm_coefficients),
- integer_lstm_param->layer_norm_forget_scale_a,
- integer_lstm_param->layer_norm_forget_scale_b,
- cell_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- cell_layer_norm_coefficients),
- integer_lstm_param->layer_norm_cell_scale_a,
- integer_lstm_param->layer_norm_cell_scale_b,
- output_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- output_layer_norm_coefficients),
- integer_lstm_param->layer_norm_output_scale_a,
- integer_lstm_param->layer_norm_output_scale_b,
- input_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(input_gate_bias),
- forget_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(forget_gate_bias),
- cell_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(cell_gate_bias),
- output_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(output_gate_bias),
- integer_lstm_param->quantized_cell_clip,
- integer_lstm_param->quantized_proj_clip,
- integer_lstm_param->cell_scale,
- integer_lstm_param->input_variance_guard,
- integer_lstm_param->forget_variance_guard,
- integer_lstm_param->cell_variance_guard,
- integer_lstm_param->output_variance_guard,
- integer_lstm_param->input_to_forget_effective_bias,
- integer_lstm_param->recurrent_to_forget_effective_bias,
- integer_lstm_param->input_to_cell_effective_bias,
- integer_lstm_param->recurrent_to_cell_effective_bias,
- integer_lstm_param->input_to_output_effective_bias,
- integer_lstm_param->recurrent_to_output_effective_bias,
- integer_lstm_param->input_to_input_effective_bias,
- integer_lstm_param->recurrent_to_input_effective_bias,
- integer_lstm_param->projection_effective_bias, n_batch, n_cell,
- n_input, n_output, tflite::micro::GetTensorData<int8_t>(output_state),
- output_state_zp, tflite::micro::GetTensorData<int16_t>(cell_state),
- output_ptr, scratch0, scratch1, scratch2, scratch3, scratch4,
- scratch5);
- }
- } else {
- for (int b = 0; b < n_batch; b++) {
- const int input_step = n_input;
- const int output_step = output_batch_leading_dim;
- for (int t = 0; t < max_time; t++) {
- // If this is the forward_sequence, step forward, otherwise step
- // backwards.
- const int t_rel = forward_sequence ? t : max_time - t - 1;
- const int time_offset = b * max_time + t_rel;
- const int8_t* input_ptr = tflite::micro::GetTensorData<int8_t>(input) +
- time_offset * input_step;
- int8_t* output_ptr = tflite::micro::GetTensorData<int8_t>(output) +
- time_offset * output_step;
- // Offset the {output,cell}_state pointers to the right batch.
- int8_t* output_state_ptr =
- tflite::micro::GetTensorData<int8_t>(output_state) +
- b * output_batch_leading_dim;
- int16_t* cell_state_ptr =
- tflite::micro::GetTensorData<int16_t>(cell_state) + b * n_cell;
- LstmStepInteger8x8_16(
- input_ptr,
- input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_input_weights),
- integer_lstm_param->effective_input_to_input_scale_a,
- integer_lstm_param->effective_input_to_input_scale_b,
- input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_forget_weights),
- integer_lstm_param->effective_input_to_forget_scale_a,
- integer_lstm_param->effective_input_to_forget_scale_b,
- input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_cell_weights),
- integer_lstm_param->effective_input_to_cell_scale_a,
- integer_lstm_param->effective_input_to_cell_scale_b,
- input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_output_weights),
- integer_lstm_param->effective_input_to_output_scale_a,
- integer_lstm_param->effective_input_to_output_scale_b,
- recurrent_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_input_weights),
- integer_lstm_param->effective_recurrent_to_input_scale_a,
- integer_lstm_param->effective_recurrent_to_input_scale_b,
- recurrent_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_forget_weights),
- integer_lstm_param->effective_recurrent_to_forget_scale_a,
- integer_lstm_param->effective_recurrent_to_forget_scale_b,
- recurrent_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_cell_weights),
- integer_lstm_param->effective_recurrent_to_cell_scale_a,
- integer_lstm_param->effective_recurrent_to_cell_scale_b,
- recurrent_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(
- recurrent_to_output_weights),
- integer_lstm_param->effective_recurrent_to_output_scale_a,
- integer_lstm_param->effective_recurrent_to_output_scale_b,
- cell_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(cell_to_input_weights),
- integer_lstm_param->effective_cell_to_input_scale_a,
- integer_lstm_param->effective_cell_to_input_scale_b,
- cell_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(cell_to_forget_weights),
- integer_lstm_param->effective_cell_to_forget_scale_a,
- integer_lstm_param->effective_cell_to_forget_scale_b,
- cell_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(cell_to_output_weights),
- integer_lstm_param->effective_cell_to_output_scale_a,
- integer_lstm_param->effective_cell_to_output_scale_b,
- projection_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(projection_weights),
- integer_lstm_param->effective_proj_scale_a,
- integer_lstm_param->effective_proj_scale_b,
- integer_lstm_param->hidden_zp,
- integer_lstm_param->effective_hidden_scale_a,
- integer_lstm_param->effective_hidden_scale_b,
- input_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- input_layer_norm_coefficients),
- integer_lstm_param->layer_norm_input_scale_a,
- integer_lstm_param->layer_norm_input_scale_b,
- forget_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- forget_layer_norm_coefficients),
- integer_lstm_param->layer_norm_forget_scale_a,
- integer_lstm_param->layer_norm_forget_scale_b,
- cell_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- cell_layer_norm_coefficients),
- integer_lstm_param->layer_norm_cell_scale_a,
- integer_lstm_param->layer_norm_cell_scale_b,
- output_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- output_layer_norm_coefficients),
- integer_lstm_param->layer_norm_output_scale_a,
- integer_lstm_param->layer_norm_output_scale_b,
- input_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(input_gate_bias),
- forget_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(forget_gate_bias),
- cell_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(cell_gate_bias),
- output_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(output_gate_bias),
- integer_lstm_param->quantized_cell_clip,
- integer_lstm_param->quantized_proj_clip,
- integer_lstm_param->cell_scale,
- integer_lstm_param->input_variance_guard,
- integer_lstm_param->forget_variance_guard,
- integer_lstm_param->cell_variance_guard,
- integer_lstm_param->output_variance_guard,
- integer_lstm_param->input_to_forget_effective_bias,
- integer_lstm_param->recurrent_to_forget_effective_bias,
- integer_lstm_param->input_to_cell_effective_bias,
- integer_lstm_param->recurrent_to_cell_effective_bias,
- integer_lstm_param->input_to_output_effective_bias,
- integer_lstm_param->recurrent_to_output_effective_bias,
- integer_lstm_param->input_to_input_effective_bias,
- integer_lstm_param->recurrent_to_input_effective_bias,
- integer_lstm_param->projection_effective_bias, /*n_batch=*/1,
- n_cell, n_input, n_output, output_state_ptr, output_state_zp,
- cell_state_ptr, output_ptr, scratch0, scratch1, scratch2, scratch3,
- scratch4, scratch5);
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus EvalInteger8x8_8Lstm(
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* input_to_input_weights,
- const TfLiteEvalTensor* input_to_forget_weights,
- const TfLiteEvalTensor* input_to_cell_weights,
- const TfLiteEvalTensor* input_to_output_weights,
- const TfLiteEvalTensor* recurrent_to_input_weights,
- const TfLiteEvalTensor* recurrent_to_forget_weights,
- const TfLiteEvalTensor* recurrent_to_cell_weights,
- const TfLiteEvalTensor* recurrent_to_output_weights,
- const TfLiteEvalTensor* cell_to_input_weights,
- const TfLiteEvalTensor* cell_to_forget_weights,
- const TfLiteEvalTensor* cell_to_output_weights,
- const TfLiteEvalTensor* input_layer_norm_coefficients,
- const TfLiteEvalTensor* forget_layer_norm_coefficients,
- const TfLiteEvalTensor* cell_layer_norm_coefficients,
- const TfLiteEvalTensor* output_layer_norm_coefficients,
- const TfLiteEvalTensor* input_gate_bias,
- const TfLiteEvalTensor* forget_gate_bias,
- const TfLiteEvalTensor* cell_gate_bias,
- const TfLiteEvalTensor* output_gate_bias,
- const TfLiteEvalTensor* projection_weights,
- const TfLiteEvalTensor* projection_bias, const TfLiteLSTMParams* params,
- TfLiteEvalTensor* output_state, TfLiteEvalTensor* cell_state,
- TfLiteEvalTensor* output, const IntegerLstmParameter* integer_lstm_param,
- int32_t input_zp, int32_t output_state_zp, int8_t* scratch0,
- int8_t* scratch1, int16_t* scratch2, int16_t* scratch3, int16_t* scratch4,
- int16_t* scratch5, int16_t* scratch6, int16_t* scratch7) {
- TFLITE_DCHECK(input->dims->size >= 2 && input->dims->size <= 3);
- const int n_input = input->dims->data[input->dims->size - 1];
- int max_time, n_batch;
- if (input->dims->size == 2) {
- max_time = 1;
- n_batch = input->dims->data[0];
- } else {
- max_time = input->dims->data[0];
- n_batch = input->dims->data[1];
- }
- // n_cell and n_output will be the same size when there is no projection.
- const int n_cell = input_to_output_weights->dims->data[0];
- const int n_output = recurrent_to_output_weights->dims->data[1];
- // Get params for time/batch/sequence.
- const int output_batch_leading_dim =
- output->dims->data[output->dims->size - 1];
- const int input_step = n_batch * n_input;
- const int output_step = n_batch * output_batch_leading_dim;
- for (int t = 0; t < max_time; t++) {
- const int t_rel = t;
- int8_t* output_ptr =
- tflite::micro::GetTensorData<int8_t>(output) + t_rel * output_step;
- // Input can be int8 asymmetric or int16 symmetric.
- const int8_t* input_ptr =
- tflite::micro::GetTensorData<int8_t>(input) + t_rel * input_step;
- LstmStepInteger8x8_8(
- input_ptr, input_zp,
- input_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_input_weights),
- integer_lstm_param->effective_input_to_input_scale_a,
- integer_lstm_param->effective_input_to_input_scale_b,
- input_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_forget_weights),
- integer_lstm_param->effective_input_to_forget_scale_a,
- integer_lstm_param->effective_input_to_forget_scale_b,
- input_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_cell_weights),
- integer_lstm_param->effective_input_to_cell_scale_a,
- integer_lstm_param->effective_input_to_cell_scale_b,
- input_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(input_to_output_weights),
- integer_lstm_param->effective_input_to_output_scale_a,
- integer_lstm_param->effective_input_to_output_scale_b,
- recurrent_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(recurrent_to_input_weights),
- integer_lstm_param->effective_recurrent_to_input_scale_a,
- integer_lstm_param->effective_recurrent_to_input_scale_b,
- recurrent_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(recurrent_to_forget_weights),
- integer_lstm_param->effective_recurrent_to_forget_scale_a,
- integer_lstm_param->effective_recurrent_to_forget_scale_b,
- recurrent_to_cell_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(recurrent_to_cell_weights),
- integer_lstm_param->effective_recurrent_to_cell_scale_a,
- integer_lstm_param->effective_recurrent_to_cell_scale_b,
- recurrent_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(recurrent_to_output_weights),
- integer_lstm_param->effective_recurrent_to_output_scale_a,
- integer_lstm_param->effective_recurrent_to_output_scale_b,
- cell_to_input_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_input_weights),
- integer_lstm_param->effective_cell_to_input_scale_a,
- integer_lstm_param->effective_cell_to_input_scale_b,
- cell_to_forget_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_forget_weights),
- integer_lstm_param->effective_cell_to_forget_scale_a,
- integer_lstm_param->effective_cell_to_forget_scale_b,
- cell_to_output_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(cell_to_output_weights),
- integer_lstm_param->effective_cell_to_output_scale_a,
- integer_lstm_param->effective_cell_to_output_scale_b,
- projection_weights == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int8_t>(projection_weights),
- integer_lstm_param->effective_proj_scale_a,
- integer_lstm_param->effective_proj_scale_b,
- input_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- input_layer_norm_coefficients),
- integer_lstm_param->layer_norm_input_scale_a,
- integer_lstm_param->layer_norm_input_scale_b,
- forget_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- forget_layer_norm_coefficients),
- integer_lstm_param->layer_norm_forget_scale_a,
- integer_lstm_param->layer_norm_forget_scale_b,
- cell_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- cell_layer_norm_coefficients),
- integer_lstm_param->layer_norm_cell_scale_a,
- integer_lstm_param->layer_norm_cell_scale_b,
- output_layer_norm_coefficients == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int16_t>(
- output_layer_norm_coefficients),
- integer_lstm_param->layer_norm_output_scale_a,
- integer_lstm_param->layer_norm_output_scale_b,
- input_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(input_gate_bias),
- forget_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(forget_gate_bias),
- cell_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(cell_gate_bias),
- output_gate_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(output_gate_bias),
- projection_bias == nullptr
- ? nullptr
- : tflite::micro::GetTensorData<int32_t>(projection_bias),
- params, integer_lstm_param->intermediate_scale_a,
- integer_lstm_param->intermediate_scale_b,
- integer_lstm_param->intermediate_zp,
- integer_lstm_param->quantized_cell_clip,
- integer_lstm_param->quantized_proj_clip, n_batch, n_cell, n_input,
- n_output, output_batch_leading_dim,
- tflite::micro::GetTensorData<int8_t>(output_state), output_state_zp,
- tflite::micro::GetTensorData<int16_t>(cell_state), output_ptr, scratch0,
- scratch1, scratch2, scratch3, scratch4, scratch5, scratch6, scratch7);
- }
- return kTfLiteOk;
- }
- } // namespace tflite
|