nt99141.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032
  1. /*
  2. * This file is part of the OpenMV project.
  3. * Copyright (c) 2013/2014 Ibrahim Abdelkader <i.abdalkader@gmail.com>
  4. * This work is licensed under the MIT license, see the file LICENSE for details.
  5. *
  6. * NT99141 driver.
  7. *
  8. */
  9. #include <stdint.h>
  10. #include <stdlib.h>
  11. #include <string.h>
  12. #include "sccb.h"
  13. #include "nt99141.h"
  14. #include "nt99141_regs.h"
  15. #include "nt99141_settings.h"
  16. #include "freertos/FreeRTOS.h"
  17. #include "freertos/task.h"
  18. #if defined(ARDUINO_ARCH_ESP32) && defined(CONFIG_ARDUHAL_ESP_LOG)
  19. #include "esp32-hal-log.h"
  20. #else
  21. #include "esp_log.h"
  22. static const char *TAG = "NT99141";
  23. #endif
  24. //#define REG_DEBUG_ON
  25. static int read_reg(uint8_t slv_addr, const uint16_t reg)
  26. {
  27. int ret = SCCB_Read16(slv_addr, reg);
  28. #ifdef REG_DEBUG_ON
  29. if (ret < 0) {
  30. ESP_LOGE(TAG, "READ REG 0x%04x FAILED: %d", reg, ret);
  31. }
  32. #endif
  33. return ret;
  34. }
  35. static int check_reg_mask(uint8_t slv_addr, uint16_t reg, uint8_t mask)
  36. {
  37. return (read_reg(slv_addr, reg) & mask) == mask;
  38. }
  39. static int read_reg16(uint8_t slv_addr, const uint16_t reg)
  40. {
  41. int ret = 0, ret2 = 0;
  42. ret = read_reg(slv_addr, reg);
  43. if (ret >= 0) {
  44. ret = (ret & 0xFF) << 8;
  45. ret2 = read_reg(slv_addr, reg + 1);
  46. if (ret2 < 0) {
  47. ret = ret2;
  48. } else {
  49. ret |= ret2 & 0xFF;
  50. }
  51. }
  52. return ret;
  53. }
  54. static int write_reg(uint8_t slv_addr, const uint16_t reg, uint8_t value)
  55. {
  56. int ret = 0;
  57. #ifndef REG_DEBUG_ON
  58. ret = SCCB_Write16(slv_addr, reg, value);
  59. #else
  60. int old_value = read_reg(slv_addr, reg);
  61. if (old_value < 0) {
  62. return old_value;
  63. }
  64. if ((uint8_t)old_value != value) {
  65. ESP_LOGD(TAG, "NEW REG 0x%04x: 0x%02x to 0x%02x", reg, (uint8_t)old_value, value);
  66. ret = SCCB_Write16(slv_addr, reg, value);
  67. } else {
  68. ESP_LOGD(TAG, "OLD REG 0x%04x: 0x%02x", reg, (uint8_t)old_value);
  69. ret = SCCB_Write16(slv_addr, reg, value);//maybe not?
  70. }
  71. if (ret < 0) {
  72. ESP_LOGE(TAG, "WRITE REG 0x%04x FAILED: %d", reg, ret);
  73. }
  74. #endif
  75. return ret;
  76. }
  77. static int set_reg_bits(uint8_t slv_addr, uint16_t reg, uint8_t offset, uint8_t mask, uint8_t value)
  78. {
  79. int ret = 0;
  80. uint8_t c_value, new_value;
  81. ret = read_reg(slv_addr, reg);
  82. if (ret < 0) {
  83. return ret;
  84. }
  85. c_value = ret;
  86. new_value = (c_value & ~(mask << offset)) | ((value & mask) << offset);
  87. ret = write_reg(slv_addr, reg, new_value);
  88. return ret;
  89. }
  90. static int write_regs(uint8_t slv_addr, const uint16_t (*regs)[2])
  91. {
  92. int i = 0, ret = 0;
  93. while (!ret && regs[i][0] != REGLIST_TAIL) {
  94. if (regs[i][0] == REG_DLY) {
  95. vTaskDelay(regs[i][1] / portTICK_PERIOD_MS);
  96. } else {
  97. ret = write_reg(slv_addr, regs[i][0], regs[i][1]);
  98. }
  99. i++;
  100. }
  101. return ret;
  102. }
  103. static int write_reg16(uint8_t slv_addr, const uint16_t reg, uint16_t value)
  104. {
  105. if (write_reg(slv_addr, reg, value >> 8) || write_reg(slv_addr, reg + 1, value)) {
  106. return -1;
  107. }
  108. return 0;
  109. }
  110. static int write_addr_reg(uint8_t slv_addr, const uint16_t reg, uint16_t x_value, uint16_t y_value)
  111. {
  112. if (write_reg16(slv_addr, reg, x_value) || write_reg16(slv_addr, reg + 2, y_value)) {
  113. return -1;
  114. }
  115. return 0;
  116. }
  117. #define write_reg_bits(slv_addr, reg, mask, enable) set_reg_bits(slv_addr, reg, 0, mask, enable?mask:0)
  118. static int calc_sysclk(int xclk, bool pll_bypass, int pll_multiplier, int pll_sys_div, int pll_pre_div, bool pll_root_2x, int pll_seld5, bool pclk_manual, int pclk_div)
  119. {
  120. const int pll_pre_div2x_map[] = { 2, 3, 4, 6 };//values are multiplied by two to avoid floats
  121. const int pll_seld52x_map[] = { 2, 2, 4, 5 };
  122. if (!pll_sys_div) {
  123. pll_sys_div = 1;
  124. }
  125. int pll_pre_div2x = pll_pre_div2x_map[pll_pre_div];
  126. int pll_root_div = pll_root_2x ? 2 : 1;
  127. int pll_seld52x = pll_seld52x_map[pll_seld5];
  128. int VCO = (xclk / 1000) * pll_multiplier * pll_root_div * 2 / pll_pre_div2x;
  129. int PLLCLK = pll_bypass ? (xclk) : (VCO * 1000 * 2 / pll_sys_div / pll_seld52x);
  130. int PCLK = PLLCLK / 2 / ((pclk_manual && pclk_div) ? pclk_div : 1);
  131. int SYSCLK = PLLCLK / 4;
  132. ESP_LOGD(TAG, "Calculated VCO: %d Hz, PLLCLK: %d Hz, SYSCLK: %d Hz, PCLK: %d Hz", VCO * 1000, PLLCLK, SYSCLK, PCLK);
  133. return SYSCLK;
  134. }
  135. static int set_pll(sensor_t *sensor, bool bypass, uint8_t multiplier, uint8_t sys_div, uint8_t pre_div, bool root_2x, uint8_t seld5, bool pclk_manual, uint8_t pclk_div)
  136. {
  137. return -1;
  138. }
  139. static int set_ae_level(sensor_t *sensor, int level);
  140. static int reset(sensor_t *sensor)
  141. {
  142. int ret = 0;
  143. // Software Reset: clear all registers and reset them to their default values
  144. ret = write_reg(sensor->slv_addr, SYSTEM_CTROL0, 0x01);
  145. if (ret) {
  146. ESP_LOGE(TAG, "Software Reset FAILED!");
  147. return ret;
  148. }
  149. vTaskDelay(100 / portTICK_PERIOD_MS);
  150. ret = write_regs(sensor->slv_addr, sensor_default_regs); //re-initial
  151. if (ret == 0) {
  152. ESP_LOGD(TAG, "Camera defaults loaded");
  153. ret = set_ae_level(sensor, 0);
  154. vTaskDelay(100 / portTICK_PERIOD_MS);
  155. }
  156. return ret;
  157. }
  158. static int set_pixformat(sensor_t *sensor, pixformat_t pixformat)
  159. {
  160. int ret = 0;
  161. const uint16_t (*regs)[2];
  162. switch (pixformat) {
  163. case PIXFORMAT_YUV422:
  164. regs = sensor_fmt_yuv422;
  165. break;
  166. case PIXFORMAT_GRAYSCALE:
  167. regs = sensor_fmt_grayscale;
  168. break;
  169. case PIXFORMAT_RGB565:
  170. case PIXFORMAT_RGB888:
  171. regs = sensor_fmt_rgb565;
  172. break;
  173. case PIXFORMAT_JPEG:
  174. regs = sensor_fmt_jpeg;
  175. break;
  176. case PIXFORMAT_RAW:
  177. regs = sensor_fmt_raw;
  178. break;
  179. default:
  180. ESP_LOGE(TAG, "Unsupported pixformat: %u", pixformat);
  181. return -1;
  182. }
  183. ret = write_regs(sensor->slv_addr, regs);
  184. if (ret == 0) {
  185. sensor->pixformat = pixformat;
  186. ESP_LOGD(TAG, "Set pixformat to: %u", pixformat);
  187. }
  188. return ret;
  189. }
  190. static int set_image_options(sensor_t *sensor)
  191. {
  192. int ret = 0;
  193. uint8_t reg20 = 0;
  194. uint8_t reg21 = 0;
  195. uint8_t reg4514 = 0;
  196. uint8_t reg4514_test = 0;
  197. // V-Flip
  198. if (sensor->status.vflip) {
  199. reg20 |= 0x01;
  200. reg4514_test |= 1;
  201. }
  202. // H-Mirror
  203. if (sensor->status.hmirror) {
  204. reg21 |= 0x02;
  205. reg4514_test |= 2;
  206. }
  207. switch (reg4514_test) {
  208. }
  209. if (write_reg(sensor->slv_addr, TIMING_TC_REG20, reg20 | reg21)) {
  210. ESP_LOGE(TAG, "Setting Image Options Failed");
  211. ret = -1;
  212. }
  213. ESP_LOGD(TAG, "Set Image Options: Compression: %u, Binning: %u, V-Flip: %u, H-Mirror: %u, Reg-4514: 0x%02x",
  214. sensor->pixformat == PIXFORMAT_JPEG, sensor->status.binning, sensor->status.vflip, sensor->status.hmirror, reg4514);
  215. return ret;
  216. }
  217. static int set_framesize(sensor_t *sensor, framesize_t framesize)
  218. {
  219. int ret = 0;
  220. sensor->status.framesize = framesize;
  221. ret = write_regs(sensor->slv_addr, sensor_default_regs);
  222. if (framesize == FRAMESIZE_QVGA) {
  223. ESP_LOGD(TAG, "Set FRAMESIZE_QVGA");
  224. ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA);
  225. #if CONFIG_NT99141_SUPPORT_XSKIP
  226. ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: xskip mode");
  227. ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA_xskip);
  228. #elif CONFIG_NT99141_SUPPORT_CROP
  229. ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: crop mode");
  230. ret = write_regs(sensor->slv_addr, sensor_framesize_QVGA_crop);
  231. #endif
  232. } else if (framesize == FRAMESIZE_VGA) {
  233. ESP_LOGD(TAG, "Set FRAMESIZE_VGA");
  234. // ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
  235. ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_xyskip);// Resolution:640*360 This configuration is equally-scaled without deforming
  236. #ifdef CONFIG_NT99141_SUPPORT_XSKIP
  237. ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: xskip mode");
  238. ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_xskip);
  239. #elif CONFIG_NT99141_SUPPORT_CROP
  240. ESP_LOGD(TAG, "Set FRAMESIZE_QVGA: crop mode");
  241. ret = write_regs(sensor->slv_addr, sensor_framesize_VGA_crop);
  242. #endif
  243. } else if (framesize >= FRAMESIZE_HD) {
  244. ESP_LOGD(TAG, "Set FRAMESIZE_HD");
  245. ret = write_regs(sensor->slv_addr, sensor_framesize_HD);
  246. } else {
  247. ESP_LOGD(TAG, "Dont suppost this size, Set FRAMESIZE_VGA");
  248. ret = write_regs(sensor->slv_addr, sensor_framesize_VGA);
  249. }
  250. return 0;
  251. }
  252. static int set_hmirror(sensor_t *sensor, int enable)
  253. {
  254. int ret = 0;
  255. sensor->status.hmirror = enable;
  256. ret = set_image_options(sensor);
  257. if (ret == 0) {
  258. ESP_LOGD(TAG, "Set h-mirror to: %d", enable);
  259. }
  260. return ret;
  261. }
  262. static int set_vflip(sensor_t *sensor, int enable)
  263. {
  264. int ret = 0;
  265. sensor->status.vflip = enable;
  266. ret = set_image_options(sensor);
  267. if (ret == 0) {
  268. ESP_LOGD(TAG, "Set v-flip to: %d", enable);
  269. }
  270. return ret;
  271. }
  272. static int set_quality(sensor_t *sensor, int qs)
  273. {
  274. int ret = 0;
  275. ret = write_reg(sensor->slv_addr, COMPRESSION_CTRL07, qs & 0x3f);
  276. if (ret == 0) {
  277. sensor->status.quality = qs;
  278. ESP_LOGD(TAG, "Set quality to: %d", qs);
  279. }
  280. return ret;
  281. }
  282. static int set_colorbar(sensor_t *sensor, int enable)
  283. {
  284. int ret = 0;
  285. ret = write_reg_bits(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR, enable);
  286. if (ret == 0) {
  287. sensor->status.colorbar = enable;
  288. ESP_LOGD(TAG, "Set colorbar to: %d", enable);
  289. }
  290. return ret;
  291. }
  292. static int set_gain_ctrl(sensor_t *sensor, int enable)
  293. {
  294. int ret = 0;
  295. ret = write_reg_bits(sensor->slv_addr, 0x32bb, 0x87, enable);
  296. if (ret == 0) {
  297. ESP_LOGD(TAG, "Set gain_ctrl to: %d", enable);
  298. sensor->status.agc = enable;
  299. }
  300. return ret;
  301. }
  302. static int set_exposure_ctrl(sensor_t *sensor, int enable)
  303. {
  304. int ret = 0;
  305. int data = 0;
  306. // ret = write_reg_bits(sensor->slv_addr, 0x32bb, 0x87, enable);
  307. data = read_reg(sensor->slv_addr, 0x3201);
  308. ESP_LOGD(TAG, "set_exposure_ctrl:enable");
  309. if (enable) {
  310. ESP_LOGD(TAG, "set_exposure_ctrl:enable");
  311. ret = write_reg(sensor->slv_addr, 0x3201, (1 << 5) | data);
  312. } else {
  313. ESP_LOGD(TAG, "set_exposure_ctrl:disable");
  314. ret = write_reg(sensor->slv_addr, 0x3201, (~(1 << 5)) & data);
  315. }
  316. if (ret == 0) {
  317. ESP_LOGD(TAG, "Set exposure_ctrl to: %d", enable);
  318. sensor->status.aec = enable;
  319. }
  320. return ret;
  321. }
  322. static int set_whitebal(sensor_t *sensor, int enable)
  323. {
  324. int ret = 0;
  325. if (ret == 0) {
  326. ESP_LOGD(TAG, "Set awb to: %d", enable);
  327. sensor->status.awb = enable;
  328. }
  329. return ret;
  330. }
  331. //Advanced AWB
  332. static int set_dcw_dsp(sensor_t *sensor, int enable)
  333. {
  334. int ret = 0;
  335. if (ret == 0) {
  336. ESP_LOGD(TAG, "Set dcw to: %d", enable);
  337. sensor->status.dcw = enable;
  338. }
  339. return ret;
  340. }
  341. //night mode enable
  342. static int set_aec2(sensor_t *sensor, int enable)
  343. {
  344. int ret = 0;
  345. if (ret == 0) {
  346. ESP_LOGD(TAG, "Set aec2 to: %d", enable);
  347. sensor->status.aec2 = enable;
  348. }
  349. return ret;
  350. }
  351. static int set_bpc_dsp(sensor_t *sensor, int enable)
  352. {
  353. int ret = 0;
  354. if (ret == 0) {
  355. ESP_LOGD(TAG, "Set bpc to: %d", enable);
  356. sensor->status.bpc = enable;
  357. }
  358. return ret;
  359. }
  360. static int set_wpc_dsp(sensor_t *sensor, int enable)
  361. {
  362. int ret = 0;
  363. if (ret == 0) {
  364. ESP_LOGD(TAG, "Set wpc to: %d", enable);
  365. sensor->status.wpc = enable;
  366. }
  367. return ret;
  368. }
  369. //Gamma enable
  370. static int set_raw_gma_dsp(sensor_t *sensor, int enable)
  371. {
  372. int ret = 0;
  373. if (ret == 0) {
  374. ESP_LOGD(TAG, "Set raw_gma to: %d", enable);
  375. sensor->status.raw_gma = enable;
  376. }
  377. return ret;
  378. }
  379. static int set_lenc_dsp(sensor_t *sensor, int enable)
  380. {
  381. int ret = 0;
  382. if (ret == 0) {
  383. ESP_LOGD(TAG, "Set lenc to: %d", enable);
  384. sensor->status.lenc = enable;
  385. }
  386. return ret;
  387. }
  388. static int get_agc_gain(sensor_t *sensor)
  389. {
  390. ESP_LOGD(TAG, "get_agc_gain can not be configured at present");
  391. return 0;
  392. }
  393. //real gain
  394. static int set_agc_gain(sensor_t *sensor, int gain)
  395. {
  396. ESP_LOGD(TAG, "set_agc_gain can not be configured at present");
  397. // ESP_LOGD(TAG, "GAIN = %d\n", gain);
  398. int cnt = gain / 2;
  399. switch (cnt) {
  400. case 0:
  401. ESP_LOGD(TAG, "set_agc_gain: 1x");
  402. write_reg(sensor->slv_addr, 0X301D, 0X00);
  403. break;
  404. case 1:
  405. ESP_LOGD(TAG,"set_agc_gain: 2x");
  406. write_reg(sensor->slv_addr, 0X301D, 0X0F);
  407. break;
  408. case 2:
  409. ESP_LOGD(TAG,"set_agc_gain: 4x");
  410. write_reg(sensor->slv_addr, 0X301D, 0X2F);
  411. break;
  412. case 3:
  413. ESP_LOGD(TAG,"set_agc_gain: 6x");
  414. write_reg(sensor->slv_addr, 0X301D, 0X37);
  415. break;
  416. case 4:
  417. ESP_LOGD(TAG,"set_agc_gain: 8x");
  418. write_reg(sensor->slv_addr, 0X301D, 0X3F);
  419. break;
  420. default:
  421. ESP_LOGD(TAG,"fail set_agc_gain");
  422. break;
  423. }
  424. return 0;
  425. }
  426. static int get_aec_value(sensor_t *sensor)
  427. {
  428. ESP_LOGD(TAG, "get_aec_value can not be configured at present");
  429. return 0;
  430. }
  431. static int set_aec_value(sensor_t *sensor, int value)
  432. {
  433. ESP_LOGD(TAG, "set_aec_value can not be configured at present");
  434. int ret = 0;
  435. // ESP_LOGD(TAG, " set_aec_value to: %d", value);
  436. ret = write_reg_bits(sensor->slv_addr, 0x3012, 0x00, (value >> 8) & 0xff);
  437. ret = write_reg_bits(sensor->slv_addr, 0x3013, 0x01, value & 0xff);
  438. if (ret == 0) {
  439. ESP_LOGD(TAG, " set_aec_value to: %d", value);
  440. // sensor->status.aec = enable;
  441. }
  442. return ret;
  443. }
  444. static int set_ae_level(sensor_t *sensor, int level)
  445. {
  446. ESP_LOGD(TAG, "set_ae_level can not be configured at present");
  447. int ret = 0;
  448. if (level < 0) {
  449. level = 0;
  450. } else if (level > 9) {
  451. level = 9;
  452. }
  453. for (int i = 0; i < 5; i++) {
  454. ret += write_reg(sensor->slv_addr, sensor_ae_level[ 5 * level + i ][0], sensor_ae_level[5 * level + i ][1]);
  455. }
  456. if (ret) {
  457. ESP_LOGE(TAG, " fail to set ae level: %d", ret);
  458. }
  459. return 0;
  460. }
  461. static int set_wb_mode(sensor_t *sensor, int mode)
  462. {
  463. int ret = 0;
  464. if (mode < 0 || mode > 4) {
  465. return -1;
  466. }
  467. ret = write_reg(sensor->slv_addr, 0x3201, (mode != 0));
  468. if (ret) {
  469. return ret;
  470. }
  471. switch (mode) {
  472. case 1://Sunny
  473. ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
  474. || write_reg16(sensor->slv_addr, 0x3291, 0x38)
  475. || write_reg16(sensor->slv_addr, 0x3296, 0x01)
  476. || write_reg16(sensor->slv_addr, 0x3297, 0x68)
  477. || write_reg16(sensor->slv_addr, 0x3060, 0x01);
  478. break;
  479. case 2://Cloudy
  480. ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
  481. || write_reg16(sensor->slv_addr, 0x3291, 0x51)
  482. || write_reg16(sensor->slv_addr, 0x3296, 0x01)
  483. || write_reg16(sensor->slv_addr, 0x3297, 0x00)
  484. || write_reg16(sensor->slv_addr, 0x3060, 0x01);
  485. break;
  486. case 3://INCANDESCENCE]
  487. ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
  488. || write_reg16(sensor->slv_addr, 0x3291, 0x30)
  489. || write_reg16(sensor->slv_addr, 0x3296, 0x01)
  490. || write_reg16(sensor->slv_addr, 0x3297, 0xCB)
  491. || write_reg16(sensor->slv_addr, 0x3060, 0x01);
  492. break;
  493. case 4://FLUORESCENT
  494. ret = write_reg16(sensor->slv_addr, 0x3290, 0x01)
  495. || write_reg16(sensor->slv_addr, 0x3291, 0x70)
  496. || write_reg16(sensor->slv_addr, 0x3296, 0x01)
  497. || write_reg16(sensor->slv_addr, 0x3297, 0xFF)
  498. || write_reg16(sensor->slv_addr, 0x3060, 0x01);
  499. break;
  500. default://AUTO
  501. break;
  502. }
  503. if (ret == 0) {
  504. ESP_LOGD(TAG, "Set wb_mode to: %d", mode);
  505. sensor->status.wb_mode = mode;
  506. }
  507. return ret;
  508. }
  509. static int set_awb_gain_dsp(sensor_t *sensor, int enable)
  510. {
  511. int ret = 0;
  512. int old_mode = sensor->status.wb_mode;
  513. int mode = enable ? old_mode : 0;
  514. ret = set_wb_mode(sensor, mode);
  515. if (ret == 0) {
  516. sensor->status.wb_mode = old_mode;
  517. ESP_LOGD(TAG, "Set awb_gain to: %d", enable);
  518. sensor->status.awb_gain = enable;
  519. }
  520. return ret;
  521. }
  522. static int set_special_effect(sensor_t *sensor, int effect)
  523. {
  524. int ret = 0;
  525. if (effect < 0 || effect > 6) {
  526. return -1;
  527. }
  528. uint8_t *regs = (uint8_t *)sensor_special_effects[effect];
  529. ret = write_reg(sensor->slv_addr, 0x32F1, regs[0])
  530. || write_reg(sensor->slv_addr, 0x32F4, regs[1])
  531. || write_reg(sensor->slv_addr, 0x32F5, regs[2])
  532. || write_reg(sensor->slv_addr, 0x3060, regs[3]);
  533. if (ret == 0) {
  534. ESP_LOGD(TAG, "Set special_effect to: %d", effect);
  535. sensor->status.special_effect = effect;
  536. }
  537. return ret;
  538. }
  539. static int set_brightness(sensor_t *sensor, int level)
  540. {
  541. int ret = 0;
  542. uint8_t value = 0;
  543. bool negative = false;
  544. switch (level) {
  545. case 3:
  546. value = 0xA0;
  547. break;
  548. case 2:
  549. value = 0x90;
  550. break;
  551. case 1:
  552. value = 0x88;
  553. break;
  554. case -1:
  555. value = 0x78;
  556. negative = true;
  557. break;
  558. case -2:
  559. value = 0x70;
  560. negative = true;
  561. break;
  562. case -3:
  563. value = 0x60;
  564. negative = true;
  565. break;
  566. default: // 0
  567. break;
  568. }
  569. ret = write_reg(sensor->slv_addr, 0x32F2, value);
  570. if (ret == 0) {
  571. ESP_LOGD(TAG, "Set brightness to: %d", level);
  572. sensor->status.brightness = level;
  573. }
  574. return ret;
  575. }
  576. static int set_contrast(sensor_t *sensor, int level)
  577. {
  578. int ret = 0;
  579. uint8_t value1 = 0, value2 = 0 ;
  580. bool negative = false;
  581. switch (level) {
  582. case 3:
  583. value1 = 0xD0;
  584. value2 = 0xB0;
  585. break;
  586. case 2:
  587. value1 = 0xE0;
  588. value2 = 0xA0;
  589. break;
  590. case 1:
  591. value1 = 0xF0;
  592. value2 = 0x90;
  593. break;
  594. case 0:
  595. value1 = 0x00;
  596. value2 = 0x80;
  597. break;
  598. case -1:
  599. value1 = 0x10;
  600. value2 = 0x70;
  601. break;
  602. case -2:
  603. value1 = 0x20;
  604. value2 = 0x60;
  605. break;
  606. case -3:
  607. value1 = 0x30;
  608. value2 = 0x50;
  609. break;
  610. default: // 0
  611. break;
  612. }
  613. ret = write_reg(sensor->slv_addr, 0x32FC, value1);
  614. ret = write_reg(sensor->slv_addr, 0x32F2, value2);
  615. ret = write_reg(sensor->slv_addr, 0x3060, 0x01);
  616. if (ret == 0) {
  617. ESP_LOGD(TAG, "Set contrast to: %d", level);
  618. sensor->status.contrast = level;
  619. }
  620. return ret;
  621. }
  622. static int set_saturation(sensor_t *sensor, int level)
  623. {
  624. int ret = 0;
  625. if (level > 4 || level < -4) {
  626. return -1;
  627. }
  628. uint8_t *regs = (uint8_t *)sensor_saturation_levels[level + 4];
  629. {
  630. ret = write_reg(sensor->slv_addr, 0x32F3, regs[0]);
  631. if (ret) {
  632. return ret;
  633. }
  634. }
  635. if (ret == 0) {
  636. ESP_LOGD(TAG, "Set saturation to: %d", level);
  637. sensor->status.saturation = level;
  638. }
  639. return ret;
  640. }
  641. static int set_sharpness(sensor_t *sensor, int level)
  642. {
  643. int ret = 0;
  644. if (level > 3 || level < -3) {
  645. return -1;
  646. }
  647. uint8_t mt_offset_2 = (level + 3) * 8;
  648. uint8_t mt_offset_1 = mt_offset_2 + 1;
  649. ret = write_reg_bits(sensor->slv_addr, 0x5308, 0x40, false)//0x40 means auto
  650. || write_reg(sensor->slv_addr, 0x5300, 0x10)
  651. || write_reg(sensor->slv_addr, 0x5301, 0x10)
  652. || write_reg(sensor->slv_addr, 0x5302, mt_offset_1)
  653. || write_reg(sensor->slv_addr, 0x5303, mt_offset_2)
  654. || write_reg(sensor->slv_addr, 0x5309, 0x10)
  655. || write_reg(sensor->slv_addr, 0x530a, 0x10)
  656. || write_reg(sensor->slv_addr, 0x530b, 0x04)
  657. || write_reg(sensor->slv_addr, 0x530c, 0x06);
  658. if (ret == 0) {
  659. ESP_LOGD(TAG, "Set sharpness to: %d", level);
  660. sensor->status.sharpness = level;
  661. }
  662. return ret;
  663. }
  664. static int set_gainceiling(sensor_t *sensor, gainceiling_t level)
  665. {
  666. ESP_LOGD(TAG, "set_gainceiling can not be configured at present");
  667. return 0;
  668. }
  669. static int get_denoise(sensor_t *sensor)
  670. {
  671. return (read_reg(sensor->slv_addr, 0x5306) / 4) + 1;
  672. }
  673. static int set_denoise(sensor_t *sensor, int level)
  674. {
  675. ESP_LOGD(TAG, "set_denoise can not be configured at present");
  676. return 0;
  677. }
  678. static int get_reg(sensor_t *sensor, int reg, int mask)
  679. {
  680. int ret = 0, ret2 = 0;
  681. if (mask > 0xFF) {
  682. ret = read_reg16(sensor->slv_addr, reg);
  683. if (ret >= 0 && mask > 0xFFFF) {
  684. ret2 = read_reg(sensor->slv_addr, reg + 2);
  685. if (ret2 >= 0) {
  686. ret = (ret << 8) | ret2 ;
  687. } else {
  688. ret = ret2;
  689. }
  690. }
  691. } else {
  692. ret = read_reg(sensor->slv_addr, reg);
  693. }
  694. if (ret > 0) {
  695. ret &= mask;
  696. }
  697. return ret;
  698. }
  699. static int set_reg(sensor_t *sensor, int reg, int mask, int value)
  700. {
  701. int ret = 0, ret2 = 0;
  702. if (mask > 0xFF) {
  703. ret = read_reg16(sensor->slv_addr, reg);
  704. if (ret >= 0 && mask > 0xFFFF) {
  705. ret2 = read_reg(sensor->slv_addr, reg + 2);
  706. if (ret2 >= 0) {
  707. ret = (ret << 8) | ret2 ;
  708. } else {
  709. ret = ret2;
  710. }
  711. }
  712. } else {
  713. ret = read_reg(sensor->slv_addr, reg);
  714. }
  715. if (ret < 0) {
  716. return ret;
  717. }
  718. value = (ret & ~mask) | (value & mask);
  719. if (mask > 0xFFFF) {
  720. ret = write_reg16(sensor->slv_addr, reg, value >> 8);
  721. if (ret >= 0) {
  722. ret = write_reg(sensor->slv_addr, reg + 2, value & 0xFF);
  723. }
  724. } else if (mask > 0xFF) {
  725. ret = write_reg16(sensor->slv_addr, reg, value);
  726. } else {
  727. ret = write_reg(sensor->slv_addr, reg, value);
  728. }
  729. return ret;
  730. }
  731. static int set_res_raw(sensor_t *sensor, int startX, int startY, int endX, int endY, int offsetX, int offsetY, int totalX, int totalY, int outputX, int outputY, bool scale, bool binning)
  732. {
  733. int ret = 0;
  734. ret = write_addr_reg(sensor->slv_addr, X_ADDR_ST_H, startX, startY)
  735. || write_addr_reg(sensor->slv_addr, X_ADDR_END_H, endX, endY)
  736. || write_addr_reg(sensor->slv_addr, X_OFFSET_H, offsetX, offsetY)
  737. || write_addr_reg(sensor->slv_addr, X_TOTAL_SIZE_H, totalX, totalY)
  738. || write_addr_reg(sensor->slv_addr, X_OUTPUT_SIZE_H, outputX, outputY);
  739. if (!ret) {
  740. sensor->status.scale = scale;
  741. sensor->status.binning = binning;
  742. ret = set_image_options(sensor);
  743. }
  744. return ret;
  745. }
  746. static int _set_pll(sensor_t *sensor, int bypass, int multiplier, int sys_div, int root_2x, int pre_div, int seld5, int pclk_manual, int pclk_div)
  747. {
  748. return set_pll(sensor, bypass > 0, multiplier, sys_div, pre_div, root_2x > 0, seld5, pclk_manual > 0, pclk_div);
  749. }
  750. esp_err_t xclk_timer_conf(int ledc_timer, int xclk_freq_hz);
  751. static int set_xclk(sensor_t *sensor, int timer, int xclk)
  752. {
  753. int ret = 0;
  754. if (xclk > 10)
  755. {
  756. ESP_LOGE(TAG, "only XCLK under 10MHz is supported, and XCLK is now set to 10M");
  757. xclk = 10;
  758. }
  759. sensor->xclk_freq_hz = xclk * 1000000U;
  760. ret = xclk_timer_conf(timer, sensor->xclk_freq_hz);
  761. return ret;
  762. }
  763. static int init_status(sensor_t *sensor)
  764. {
  765. sensor->status.brightness = 0;
  766. sensor->status.contrast = 0;
  767. sensor->status.saturation = 0;
  768. sensor->status.sharpness = (read_reg(sensor->slv_addr, 0x3301));
  769. sensor->status.denoise = get_denoise(sensor);
  770. sensor->status.ae_level = 0;
  771. sensor->status.gainceiling = read_reg16(sensor->slv_addr, 0x32F0) & 0xFF;
  772. sensor->status.awb = check_reg_mask(sensor->slv_addr, ISP_CONTROL_01, 0x10);
  773. sensor->status.dcw = !check_reg_mask(sensor->slv_addr, 0x5183, 0x80);
  774. sensor->status.agc = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AGC_MANUALEN);
  775. sensor->status.aec = !check_reg_mask(sensor->slv_addr, AEC_PK_MANUAL, AEC_PK_MANUAL_AEC_MANUALEN);
  776. sensor->status.hmirror = check_reg_mask(sensor->slv_addr, TIMING_TC_REG21, TIMING_TC_REG21_HMIRROR);
  777. sensor->status.vflip = check_reg_mask(sensor->slv_addr, TIMING_TC_REG20, TIMING_TC_REG20_VFLIP);
  778. sensor->status.colorbar = check_reg_mask(sensor->slv_addr, PRE_ISP_TEST_SETTING_1, TEST_COLOR_BAR);
  779. sensor->status.bpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x04);
  780. sensor->status.wpc = check_reg_mask(sensor->slv_addr, 0x5000, 0x02);
  781. sensor->status.raw_gma = check_reg_mask(sensor->slv_addr, 0x5000, 0x20);
  782. sensor->status.lenc = check_reg_mask(sensor->slv_addr, 0x5000, 0x80);
  783. sensor->status.quality = read_reg(sensor->slv_addr, COMPRESSION_CTRL07) & 0x3f;
  784. sensor->status.special_effect = 0;
  785. sensor->status.wb_mode = 0;
  786. sensor->status.awb_gain = check_reg_mask(sensor->slv_addr, 0x3000, 0x01);
  787. sensor->status.agc_gain = get_agc_gain(sensor);
  788. sensor->status.aec_value = get_aec_value(sensor);
  789. sensor->status.aec2 = check_reg_mask(sensor->slv_addr, 0x3000, 0x04);
  790. return 0;
  791. }
  792. int NT99141_init(sensor_t *sensor)
  793. {
  794. sensor->reset = reset;
  795. sensor->set_pixformat = set_pixformat;
  796. sensor->set_framesize = set_framesize;
  797. sensor->set_contrast = set_contrast;
  798. sensor->set_brightness = set_brightness;
  799. sensor->set_saturation = set_saturation;
  800. sensor->set_sharpness = set_sharpness;
  801. sensor->set_gainceiling = set_gainceiling;
  802. sensor->set_quality = set_quality;
  803. sensor->set_colorbar = set_colorbar;
  804. sensor->set_gain_ctrl = set_gain_ctrl;
  805. sensor->set_exposure_ctrl = set_exposure_ctrl;
  806. sensor->set_whitebal = set_whitebal;
  807. sensor->set_hmirror = set_hmirror;
  808. sensor->set_vflip = set_vflip;
  809. sensor->init_status = init_status;
  810. sensor->set_aec2 = set_aec2;
  811. sensor->set_aec_value = set_aec_value;
  812. sensor->set_special_effect = set_special_effect;
  813. sensor->set_wb_mode = set_wb_mode;
  814. sensor->set_ae_level = set_ae_level;
  815. sensor->set_dcw = set_dcw_dsp;
  816. sensor->set_bpc = set_bpc_dsp;
  817. sensor->set_wpc = set_wpc_dsp;
  818. sensor->set_awb_gain = set_awb_gain_dsp;
  819. sensor->set_agc_gain = set_agc_gain;
  820. sensor->set_raw_gma = set_raw_gma_dsp;
  821. sensor->set_lenc = set_lenc_dsp;
  822. sensor->set_denoise = set_denoise;
  823. sensor->get_reg = get_reg;
  824. sensor->set_reg = set_reg;
  825. sensor->set_res_raw = set_res_raw;
  826. sensor->set_pll = _set_pll;
  827. sensor->set_xclk = set_xclk;
  828. return 0;
  829. }