|
|
3 years ago | |
|---|---|---|
| .. | ||
| include | 3 years ago | |
| src | 3 years ago | |
| test_app | 3 years ago | |
| tests | 3 years ago | |
| .gitignore | 3 years ago | |
| .gitlab-ci.yml | 3 years ago | |
| CMakeLists.txt | 3 years ago | |
| Kconfig.projbuild | 3 years ago | |
| LICENSE | 3 years ago | |
| README.md | 3 years ago | |
The library contains optimised NN (Neural Network) functions for various Espressif chipsets.
Supported platforms:
Supported ESP chipsets include:
Kernelwise performance on ESP32-S3 chip
| Function | ANSI C | ESP32-S3 Opt | Opt Ratio | Data info | Memory |
|---|---|---|---|---|---|
| elementwise_add | 320397 | 87119 | 3.68 | size = 1615 | External |
| elementwise_mul | 125958 | 44239 | 2.85 | size = 1615 | External |
| convolution | 4663012 | 428675 | 10.88 | input(10,10), filter(64x1x1x64) | External |
| convolution | 301014 | 32433 | 9.28 | input(8,8), filter(16x1x1x16) | External |
| convolution | 2115418 | 1020923 | 2.07 | input(10,10), filter(64x3x3x3) | External |
| depthwise conv | 1190062 | 203278 | 5.85 | input (18, 18), pad(0,0), stride(1,1) filter: 1x3x3x16 | External |
| depthwise conv | 837072 | 182335 | 4.59 | input (12, 12), pad(1,1), stride(1,1) filter: 8x5x5x4 | External |
| max pool | 485714 | 76747 | 6.33 | input(16,16), filter (1x3x3x16) | Internal |
| avg pool | 541462 | 160580 | 3.37 | input(16,16), filter (1x3x3x16) | Internal |
| fully connected | 15853 | 9547 | 1.66 | len: 265, ch = 3 | Internal |
| prelu (relu6) | 19472 | 2734 | 7.12 | size, 1615 | Internal |
idf.py menuconfig and under ESP-NN select NN_OPTIMIZATIONSThere are two options presented:
Default selection is for Optimized versions. For ESP32-S3, assembly versions are automatically selected, whereas for ESP32, ANSI-C versions are selected by default.
For debugging purposes, you may want to select ANSI C
If you encounter an issue with ESP-NN, or wish to submit a feature request, please use the Issues section on the Github.
For general questions related to this library, please use the esp32.com forum.
All original source code in this repository is Copyright (C) 2020-2021 Espressif Systems. This source code is licensed under the Apache License 2.0 as described in the file LICENSE.