ClassFlowCNNGeneral.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927
  1. #include "ClassFlowCNNGeneral.h"
  2. #include <math.h>
  3. #include <iomanip>
  4. #include <sys/types.h>
  5. #include <sstream> // std::stringstream
  6. #include "CTfLiteClass.h"
  7. #include "ClassLogFile.h"
  8. static const char* TAG = "flow_analog";
  9. bool debugdetailgeneral = false;
  10. ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNType _cnntype) : ClassFlowImage(NULL, TAG)
  11. {
  12. string cnnmodelfile = "";
  13. modelxsize = 1;
  14. modelysize = 1;
  15. CNNGoodThreshold = 0.0;
  16. ListFlowControll = NULL;
  17. previousElement = NULL;
  18. SaveAllFiles = false;
  19. disabled = false;
  20. isLogImageSelect = false;
  21. CNNType = AutoDetect;
  22. CNNType = _cnntype;
  23. flowpostalignment = _flowalign;
  24. }
  25. string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev)
  26. {
  27. string result = "";
  28. if (GENERAL[_analog]->ROI.size() == 0)
  29. return result;
  30. if (CNNType == Analogue)
  31. {
  32. float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
  33. int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
  34. prev = ZeigerEval(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
  35. result = std::to_string(prev);
  36. if (_extendedResolution && (CNNType != Digital))
  37. result = result + std::to_string(ergebnis_nachkomma);
  38. for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
  39. {
  40. prev = ZeigerEval(GENERAL[_analog]->ROI[i]->result_float, prev);
  41. result = std::to_string(prev) + result;
  42. }
  43. return result;
  44. }
  45. if (CNNType == Digital)
  46. {
  47. for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i)
  48. {
  49. if (GENERAL[_analog]->ROI[i]->result_klasse >= 10)
  50. result = result + "N";
  51. else
  52. result = result + std::to_string(GENERAL[_analog]->ROI[i]->result_klasse);
  53. }
  54. return result;
  55. }
  56. if ((CNNType == DoubleHyprid10) || (CNNType == Digital100))
  57. {
  58. float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
  59. if (zahl >= 0) // NaN?
  60. {
  61. if (_extendedResolution) // ist nur gesetzt, falls es die erste Ziffer ist (kein Analog vorher!)
  62. {
  63. int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
  64. int ergebnis_vorkomma = ((int) floor(zahl)) % 10;
  65. result = std::to_string(ergebnis_vorkomma) + std::to_string(ergebnis_nachkomma);
  66. prev = ergebnis_vorkomma;
  67. }
  68. else
  69. {
  70. prev = ZeigerEval(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
  71. // prev = ZeigerEvalHybrid(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev, prev);
  72. result = std::to_string(prev);
  73. }
  74. }
  75. else
  76. {
  77. result = "N";
  78. if (_extendedResolution && (CNNType != Digital))
  79. result = "NN";
  80. }
  81. for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
  82. {
  83. if (GENERAL[_analog]->ROI[i]->result_float >= 0)
  84. {
  85. prev = ZeigerEvalHybrid(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, prev);
  86. result = std::to_string(prev) + result;
  87. }
  88. else
  89. {
  90. prev = -1;
  91. result = "N" + result;
  92. }
  93. }
  94. return result;
  95. }
  96. /*
  97. if (CNNType == Digital100)
  98. {
  99. int zif_akt = -1;
  100. float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
  101. if (zahl >= 0) // NaN?
  102. {
  103. if (_extendedResolution)
  104. {
  105. int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
  106. int ergebnis_vorkomma = ((int) floor(zahl)) % 10;
  107. result = std::to_string(ergebnis_vorkomma) + std::to_string(ergebnis_nachkomma);
  108. zif_akt = ergebnis_vorkomma;
  109. }
  110. else
  111. {
  112. zif_akt = ZeigerEvalHybrid(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, -1, -1);
  113. result = std::to_string(zif_akt);
  114. }
  115. }
  116. else
  117. {
  118. result = "N";
  119. if (_extendedResolution && (CNNType != Digital))
  120. result = "NN";
  121. }
  122. for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
  123. {
  124. if (GENERAL[_analog]->ROI[i]->result_float >= 0)
  125. {
  126. zif_akt = ZeigerEvalHybrid(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, zif_akt);
  127. result = std::to_string(zif_akt) + result;
  128. }
  129. else
  130. {
  131. zif_akt = -1;
  132. result = "N" + result;
  133. }
  134. }
  135. return result;
  136. }
  137. */
  138. return result;
  139. }
  140. int ClassFlowCNNGeneral::ZeigerEvalHybrid(float zahl, float zahl_vorgaenger, int eval_vorgaenger)
  141. {
  142. int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
  143. int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
  144. if (eval_vorgaenger < 0) // keine Vorzahl vorhanden !!! --> Runde die Zahl
  145. {
  146. if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
  147. return ((int) round(zahl) + 10) % 10;
  148. else
  149. return ((int) trunc(zahl) + 10) % 10;
  150. }
  151. if ((zahl_vorgaenger >= 0.5 ) && (zahl_vorgaenger <= 9.5))
  152. {
  153. // kein Ziffernwechsel, da Vorkomma weit genug weg ist (0+/-0.5) --> zahl wird gerundet
  154. return ((int) round(zahl) + 10) % 10;
  155. }
  156. else
  157. {
  158. if (eval_vorgaenger <= 1) // Nulldurchgang hat stattgefunden (!Bewertung über Prev_value und nicht Zahl!) --> hier aufrunden (2.8 --> 3, aber auch 3.1 --> 3)
  159. {
  160. if (ergebnis_nachkomma > 5)
  161. return (ergebnis_vorkomma + 1) % 10;
  162. else
  163. return ergebnis_vorkomma;
  164. }
  165. else // bleibt nur >= 9.5 --> noch kein Nulldurchgang --> 2.8 --> 2, und 3.1 --> 2
  166. {
  167. if (ergebnis_nachkomma > 5)
  168. return ergebnis_vorkomma;
  169. else
  170. return (ergebnis_vorkomma - 1 + 10) % 10;
  171. }
  172. }
  173. return -1;
  174. /*
  175. if (zahl_vorgaenger > 9.2) // Ziffernwechsel beginnt
  176. {
  177. if (eval_vorgaenger == 0) // Wechsel hat schon stattgefunden
  178. {
  179. return ((int) round(zahl) + 10) % 10; // Annahme, dass die neue Zahl schon in der Nähe des Ziels ist
  180. }
  181. else
  182. {
  183. if (zahl_vorgaenger <= 9.5) // Wechsel startet gerade, aber beginnt erst
  184. {
  185. if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
  186. return ((int) round(zahl) + 10) % 10;
  187. else
  188. return ((int) trunc(zahl) + 10) % 10;
  189. }
  190. else
  191. {
  192. return ((int) trunc(zahl) + 10) % 10; // Wechsel schon weiter fortgeschritten, d.h. über 2 als Nachkomma
  193. }
  194. }
  195. }
  196. if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
  197. return ((int) round(zahl) + 10) % 10;
  198. return ((int) trunc(zahl) + 10) % 10;
  199. */
  200. }
  201. int ClassFlowCNNGeneral::ZeigerEval(float zahl, int ziffer_vorgaenger)
  202. {
  203. int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
  204. int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
  205. int ergebnis, ergebnis_rating;
  206. if (ziffer_vorgaenger == -1)
  207. return ergebnis_vorkomma % 10;
  208. ergebnis_rating = ergebnis_nachkomma - ziffer_vorgaenger;
  209. if (ergebnis_nachkomma >= 5)
  210. ergebnis_rating-=5;
  211. else
  212. ergebnis_rating+=5;
  213. ergebnis = (int) round(zahl);
  214. if (ergebnis_rating < 0)
  215. ergebnis-=1;
  216. if (ergebnis == -1)
  217. ergebnis+=10;
  218. ergebnis = (ergebnis + 10) % 10;
  219. return ergebnis;
  220. }
  221. bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
  222. {
  223. std::vector<string> zerlegt;
  224. aktparamgraph = trim(aktparamgraph);
  225. if (aktparamgraph.size() == 0)
  226. if (!this->GetNextParagraph(pfile, aktparamgraph))
  227. return false;
  228. if ((toUpper(aktparamgraph) != "[ANALOG]") && (toUpper(aktparamgraph) != ";[ANALOG]")
  229. && (toUpper(aktparamgraph) != "[DIGIT]") && (toUpper(aktparamgraph) != ";[DIGIT]")
  230. && (toUpper(aktparamgraph) != "[DIGITS]") && (toUpper(aktparamgraph) != ";[DIGITS]")
  231. ) // Paragraph passt nicht
  232. return false;
  233. if (aktparamgraph[0] == ';')
  234. {
  235. disabled = true;
  236. while (getNextLine(pfile, &aktparamgraph) && !isNewParagraph(aktparamgraph));
  237. printf("[Analog/Digit] is disabled !!!\n");
  238. return true;
  239. }
  240. while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
  241. {
  242. zerlegt = this->ZerlegeZeile(aktparamgraph);
  243. if ((toUpper(zerlegt[0]) == "LOGIMAGELOCATION") && (zerlegt.size() > 1))
  244. {
  245. this->LogImageLocation = "/sdcard" + zerlegt[1];
  246. this->isLogImage = true;
  247. }
  248. if ((toUpper(zerlegt[0]) == "LOGIMAGESELECT") && (zerlegt.size() > 1))
  249. {
  250. LogImageSelect = zerlegt[1];
  251. isLogImageSelect = true;
  252. }
  253. if ((toUpper(zerlegt[0]) == "LOGFILERETENTIONINDAYS") && (zerlegt.size() > 1))
  254. {
  255. this->logfileRetentionInDays = std::stoi(zerlegt[1]);
  256. }
  257. // if ((toUpper(zerlegt[0]) == "MODELTYPE") && (zerlegt.size() > 1))
  258. // {
  259. // if (toUpper(zerlegt[1]) == "DIGITHYPRID")
  260. // CNNType = DigitalHyprid;
  261. // }
  262. if ((toUpper(zerlegt[0]) == "MODEL") && (zerlegt.size() > 1))
  263. {
  264. this->cnnmodelfile = zerlegt[1];
  265. }
  266. if ((toUpper(zerlegt[0]) == "CNNGOODTHRESHOLD") && (zerlegt.size() > 1))
  267. {
  268. CNNGoodThreshold = std::stof(zerlegt[1]);
  269. }
  270. if (zerlegt.size() >= 5)
  271. {
  272. general* _analog = GetGENERAL(zerlegt[0], true);
  273. roi* neuroi = _analog->ROI[_analog->ROI.size()-1];
  274. neuroi->posx = std::stoi(zerlegt[1]);
  275. neuroi->posy = std::stoi(zerlegt[2]);
  276. neuroi->deltax = std::stoi(zerlegt[3]);
  277. neuroi->deltay = std::stoi(zerlegt[4]);
  278. neuroi->result_float = -1;
  279. neuroi->image = NULL;
  280. neuroi->image_org = NULL;
  281. }
  282. if ((toUpper(zerlegt[0]) == "SAVEALLFILES") && (zerlegt.size() > 1))
  283. {
  284. if (toUpper(zerlegt[1]) == "TRUE")
  285. SaveAllFiles = true;
  286. }
  287. }
  288. if (!getNetworkParameter())
  289. return false;
  290. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  291. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  292. {
  293. GENERAL[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, modelchannel);
  294. GENERAL[_ana]->ROI[i]->image_org = new CImageBasis(GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, 3);
  295. }
  296. return true;
  297. }
  298. general* ClassFlowCNNGeneral::FindGENERAL(string _name_number)
  299. {
  300. for (int i = 0; i < GENERAL.size(); ++i)
  301. if (GENERAL[i]->name == _name_number)
  302. return GENERAL[i];
  303. return NULL;
  304. }
  305. general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true)
  306. {
  307. string _analog, _roi;
  308. int _pospunkt = _name.find_first_of(".");
  309. if (_pospunkt > -1)
  310. {
  311. _analog = _name.substr(0, _pospunkt);
  312. _roi = _name.substr(_pospunkt+1, _name.length() - _pospunkt - 1);
  313. }
  314. else
  315. {
  316. _analog = "default";
  317. _roi = _name;
  318. }
  319. general *_ret = NULL;
  320. for (int i = 0; i < GENERAL.size(); ++i)
  321. if (GENERAL[i]->name == _analog)
  322. _ret = GENERAL[i];
  323. if (!_create) // nicht gefunden und soll auch nicht erzeugt werden
  324. return _ret;
  325. if (_ret == NULL)
  326. {
  327. _ret = new general;
  328. _ret->name = _analog;
  329. GENERAL.push_back(_ret);
  330. }
  331. roi* neuroi = new roi;
  332. neuroi->name = _roi;
  333. _ret->ROI.push_back(neuroi);
  334. printf("GetGENERAL - GENERAL %s - roi %s\n", _analog.c_str(), _roi.c_str());
  335. return _ret;
  336. }
  337. string ClassFlowCNNGeneral::getHTMLSingleStep(string host)
  338. {
  339. string result, zw;
  340. std::vector<HTMLInfo*> htmlinfo;
  341. result = "<p>Found ROIs: </p> <p><img src=\"" + host + "/img_tmp/alg_roi.jpg\"></p>\n";
  342. result = result + "Analog Pointers: <p> ";
  343. htmlinfo = GetHTMLInfo();
  344. for (int i = 0; i < htmlinfo.size(); ++i)
  345. {
  346. std::stringstream stream;
  347. stream << std::fixed << std::setprecision(1) << htmlinfo[i]->val;
  348. zw = stream.str();
  349. result = result + "<img src=\"" + host + "/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
  350. delete htmlinfo[i];
  351. }
  352. htmlinfo.clear();
  353. return result;
  354. }
  355. bool ClassFlowCNNGeneral::doFlow(string time)
  356. {
  357. if (disabled)
  358. return true;
  359. if (!doAlignAndCut(time)){
  360. return false;
  361. };
  362. if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::doFlow nach Alignment");
  363. doNeuralNetwork(time);
  364. RemoveOldLogs();
  365. return true;
  366. }
  367. bool ClassFlowCNNGeneral::doAlignAndCut(string time)
  368. {
  369. if (disabled)
  370. return true;
  371. CAlignAndCutImage *caic = flowpostalignment->GetAlignAndCutImage();
  372. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  373. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  374. {
  375. printf("General %d - Align&Cut\n", i);
  376. caic->CutAndSave(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, GENERAL[_ana]->ROI[i]->image_org);
  377. if (SaveAllFiles)
  378. {
  379. if (GENERAL[_ana]->name == "default")
  380. GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
  381. else
  382. GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
  383. }
  384. GENERAL[_ana]->ROI[i]->image_org->Resize(modelxsize, modelysize, GENERAL[_ana]->ROI[i]->image);
  385. if (SaveAllFiles)
  386. {
  387. if (GENERAL[_ana]->name == "default")
  388. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  389. else
  390. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  391. }
  392. }
  393. return true;
  394. }
  395. void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw)
  396. {
  397. if (CNNType == Analogue)
  398. {
  399. int r = 0;
  400. int g = 255;
  401. int b = 0;
  402. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  403. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  404. {
  405. _zw->drawRect(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, r, g, b, 1);
  406. _zw->drawEllipse( (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) (GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
  407. _zw->drawLine((int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) GENERAL[_ana]->ROI[i]->posy, (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay), r, g, b, 2);
  408. _zw->drawLine((int) GENERAL[_ana]->ROI[i]->posx, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
  409. }
  410. }
  411. else
  412. {
  413. for (int _dig = 0; _dig < GENERAL.size(); ++_dig)
  414. for (int i = 0; i < GENERAL[_dig]->ROI.size(); ++i)
  415. _zw->drawRect(GENERAL[_dig]->ROI[i]->posx, GENERAL[_dig]->ROI[i]->posy, GENERAL[_dig]->ROI[i]->deltax, GENERAL[_dig]->ROI[i]->deltay, 0, 0, (255 - _dig*100), 2);
  416. }
  417. }
  418. bool ClassFlowCNNGeneral::getNetworkParameter()
  419. {
  420. if (disabled)
  421. return true;
  422. CTfLiteClass *tflite = new CTfLiteClass;
  423. string zwcnn = "/sdcard" + cnnmodelfile;
  424. zwcnn = FormatFileName(zwcnn);
  425. printf(zwcnn.c_str());printf("\n");
  426. if (!tflite->LoadModel(zwcnn)) {
  427. printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
  428. LogFile.WriteToFile("Cannot load model");
  429. delete tflite;
  430. return false;
  431. }
  432. tflite->MakeAllocate();
  433. if (CNNType == AutoDetect)
  434. {
  435. tflite->GetInputDimension(false);
  436. modelxsize = tflite->ReadInputDimenstion(0);
  437. modelysize = tflite->ReadInputDimenstion(1);
  438. modelchannel = tflite->ReadInputDimenstion(2);
  439. int _anzoutputdimensions = tflite->GetAnzOutPut();
  440. switch (_anzoutputdimensions)
  441. {
  442. case 2:
  443. CNNType = Analogue;
  444. printf("TFlite-Type set to Analogue\n");
  445. break;
  446. case 10:
  447. CNNType = DoubleHyprid10;
  448. printf("TFlite-Type set to DoubleHyprid10\n");
  449. break;
  450. case 11:
  451. CNNType = Digital;
  452. printf("TFlite-Type set to Digital\n");
  453. break;
  454. case 20:
  455. CNNType = DigitalHyprid10;
  456. printf("TFlite-Type set to DigitalHyprid10\n");
  457. break;
  458. // case 22:
  459. // CNNType = DigitalHyprid;
  460. // printf("TFlite-Type set to DigitalHyprid\n");
  461. // break;
  462. case 100:
  463. CNNType = Digital100;
  464. printf("TFlite-Type set to Digital\n");
  465. break;
  466. default:
  467. printf("ERROR ERROR ERROR - tflite passt nicht zur Firmware - ERROR ERROR ERROR\n");
  468. }
  469. }
  470. delete tflite;
  471. return true;
  472. }
  473. bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
  474. {
  475. if (disabled)
  476. return true;
  477. string logPath = CreateLogFolder(time);
  478. CTfLiteClass *tflite = new CTfLiteClass;
  479. string zwcnn = "/sdcard" + cnnmodelfile;
  480. zwcnn = FormatFileName(zwcnn);
  481. printf(zwcnn.c_str());printf("\n");
  482. if (!tflite->LoadModel(zwcnn)) {
  483. printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
  484. LogFile.WriteToFile("Cannot load model");
  485. delete tflite;
  486. return false;
  487. }
  488. tflite->MakeAllocate();
  489. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  490. {
  491. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  492. {
  493. printf("General %d - TfLite\n", i);
  494. switch (CNNType) {
  495. case Analogue:
  496. {
  497. float f1, f2;
  498. f1 = 0; f2 = 0;
  499. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  500. tflite->Invoke();
  501. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  502. f1 = tflite->GetOutputValue(0);
  503. f2 = tflite->GetOutputValue(1);
  504. float result = fmod(atan2(f1, f2) / (M_PI * 2) + 2, 1);
  505. GENERAL[_ana]->ROI[i]->result_float = result * 10;
  506. printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  507. if (isLogImage)
  508. LogImage(logPath, GENERAL[_ana]->ROI[i]->name, &GENERAL[_ana]->ROI[i]->result_float, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  509. } break;
  510. case Digital:
  511. {
  512. GENERAL[_ana]->ROI[i]->result_klasse = 0;
  513. GENERAL[_ana]->ROI[i]->result_klasse = tflite->GetClassFromImageBasis(GENERAL[_ana]->ROI[i]->image);
  514. printf("Result General(Digit)%i: %d\n", i, GENERAL[_ana]->ROI[i]->result_klasse);
  515. if (isLogImage)
  516. {
  517. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  518. if (isLogImageSelect)
  519. {
  520. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  521. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  522. }
  523. else
  524. {
  525. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  526. }
  527. }
  528. } break;
  529. /*
  530. case DigitalHyprid:
  531. {
  532. int _num, _nachkomma;
  533. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  534. tflite->Invoke();
  535. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  536. _num = tflite->GetOutClassification(0, 10);
  537. _nachkomma = tflite->GetOutClassification(11, 21);
  538. string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
  539. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  540. if ((_num == 10) || (_nachkomma == 10)) // NaN detektiert
  541. GENERAL[_ana]->ROI[i]->result_float = -1;
  542. else
  543. GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
  544. printf("Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  545. _zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
  546. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  547. if (isLogImage)
  548. {
  549. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  550. if (isLogImageSelect)
  551. {
  552. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  553. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  554. }
  555. else
  556. {
  557. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  558. }
  559. }
  560. } break;
  561. */
  562. case DigitalHyprid10:
  563. {
  564. int _num, _nachkomma;
  565. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  566. tflite->Invoke();
  567. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  568. _num = tflite->GetOutClassification(0, 9);
  569. _nachkomma = tflite->GetOutClassification(10, 19);
  570. string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
  571. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  572. GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
  573. printf("Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  574. _zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
  575. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  576. if (isLogImage)
  577. {
  578. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  579. if (isLogImageSelect)
  580. {
  581. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  582. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  583. }
  584. else
  585. {
  586. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  587. }
  588. }
  589. } break;
  590. case DoubleHyprid10:
  591. {
  592. int _num, _numplus, _numminus;
  593. float _val, _valplus, _valminus;
  594. float _fit;
  595. float _result_save_file;
  596. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  597. tflite->Invoke();
  598. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  599. _num = tflite->GetOutClassification(0, 9);
  600. _numplus = (_num + 1) % 10;
  601. _numminus = (_num - 1 + 10) % 10;
  602. _val = tflite->GetOutputValue(_num);
  603. _valplus = tflite->GetOutputValue(_numplus);
  604. _valminus = tflite->GetOutputValue(_numminus);
  605. float result = _num;
  606. if (_valplus > _valminus)
  607. {
  608. result = result + _valplus / (_valplus + _val);
  609. _fit = _val + _valplus;
  610. }
  611. else
  612. {
  613. result = result - _valminus / (_val + _valminus);
  614. _fit = _val + _valminus;
  615. }
  616. if (result > 10)
  617. result = result - 10;
  618. if (result < 0)
  619. result = result + 10;
  620. string zw = "_num (p, m): " + to_string(_num) + " " + to_string(_numplus) + " " + to_string(_numminus);
  621. zw = zw + " _val (p, m): " + to_string(_val) + " " + to_string(_valplus) + " " + to_string(_valminus);
  622. zw = zw + " result: " + to_string(result) + " _fit: " + to_string(_fit);
  623. printf("details cnn: %s\n", zw.c_str());
  624. LogFile.WriteToFile(zw);
  625. _result_save_file = result;
  626. if (_fit < CNNGoodThreshold)
  627. {
  628. GENERAL[_ana]->ROI[i]->isReject = true;
  629. result = -1;
  630. _result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
  631. string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold);
  632. printf("Value Rejected due to Threshold (Fit: %f, Threshold: %f\n", _fit, CNNGoodThreshold);
  633. LogFile.WriteToFile(zw);
  634. }
  635. else
  636. {
  637. GENERAL[_ana]->ROI[i]->isReject = false;
  638. }
  639. GENERAL[_ana]->ROI[i]->result_float = result;
  640. printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  641. if (isLogImage)
  642. {
  643. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  644. if (isLogImageSelect)
  645. {
  646. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  647. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  648. }
  649. else
  650. {
  651. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  652. }
  653. }
  654. }
  655. break;
  656. case Digital100:
  657. {
  658. int _num;
  659. float _fit;
  660. float _result_save_file;
  661. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  662. tflite->Invoke();
  663. _num = tflite->GetOutClassification();
  664. _fit = tflite->GetOutputValue(_num);
  665. GENERAL[_ana]->ROI[i]->result_float = (float)_num / 10.0;
  666. _result_save_file = GENERAL[_ana]->ROI[i]->result_float;
  667. if (_fit < CNNGoodThreshold)
  668. {
  669. GENERAL[_ana]->ROI[i]->isReject = true;
  670. GENERAL[_ana]->ROI[i]->result_float = -1;
  671. _result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
  672. string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold);
  673. printf("Value Rejected due to Threshold (Fit: %f, Threshold: %f\n", _fit, CNNGoodThreshold);
  674. LogFile.WriteToFile(zw);
  675. }
  676. else
  677. {
  678. GENERAL[_ana]->ROI[i]->isReject = false;
  679. }
  680. printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  681. if (isLogImage)
  682. {
  683. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  684. if (isLogImageSelect)
  685. {
  686. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  687. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  688. }
  689. else
  690. {
  691. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  692. }
  693. }
  694. } break;
  695. default:
  696. break;
  697. }
  698. }
  699. }
  700. delete tflite;
  701. return true;
  702. }
  703. bool ClassFlowCNNGeneral::isExtendedResolution(int _number)
  704. {
  705. if (!(CNNType == Digital))
  706. return true;
  707. return false;
  708. }
  709. std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo()
  710. {
  711. std::vector<HTMLInfo*> result;
  712. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  713. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  714. {
  715. if (GENERAL[_ana]->name == "default")
  716. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  717. else
  718. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  719. HTMLInfo *zw = new HTMLInfo;
  720. if (GENERAL[_ana]->name == "default")
  721. {
  722. zw->filename = GENERAL[_ana]->ROI[i]->name + ".bmp";
  723. zw->filename_org = GENERAL[_ana]->ROI[i]->name + ".jpg";
  724. }
  725. else
  726. {
  727. zw->filename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp";
  728. zw->filename_org = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg";
  729. }
  730. if (CNNType == Digital)
  731. zw->val = GENERAL[_ana]->ROI[i]->result_klasse;
  732. else
  733. zw->val = GENERAL[_ana]->ROI[i]->result_float;
  734. zw->image = GENERAL[_ana]->ROI[i]->image;
  735. zw->image_org = GENERAL[_ana]->ROI[i]->image_org;
  736. result.push_back(zw);
  737. }
  738. return result;
  739. }
  740. int ClassFlowCNNGeneral::getAnzahlGENERAL()
  741. {
  742. return GENERAL.size();
  743. }
  744. string ClassFlowCNNGeneral::getNameGENERAL(int _analog)
  745. {
  746. if (_analog < GENERAL.size())
  747. return GENERAL[_analog]->name;
  748. return "GENERAL DOES NOT EXIST";
  749. }
  750. general* ClassFlowCNNGeneral::GetGENERAL(int _analog)
  751. {
  752. if (_analog < GENERAL.size())
  753. return GENERAL[_analog];
  754. return NULL;
  755. }
  756. void ClassFlowCNNGeneral::UpdateNameNumbers(std::vector<std::string> *_name_numbers)
  757. {
  758. for (int _dig = 0; _dig < GENERAL.size(); _dig++)
  759. {
  760. std::string _name = GENERAL[_dig]->name;
  761. bool found = false;
  762. for (int i = 0; i < (*_name_numbers).size(); ++i)
  763. {
  764. if ((*_name_numbers)[i] == _name)
  765. found = true;
  766. }
  767. if (!found)
  768. (*_name_numbers).push_back(_name);
  769. }
  770. }