| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_H_
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- template <typename T, int N>
- void TransposeImpl(const TransposeParams& params,
- const RuntimeShape& unextended_input_shape,
- const T* input_data,
- const RuntimeShape& unextended_output_shape,
- T* output_data) {
- const int unextended_input_size = unextended_input_shape.DimensionsCount();
- const int unextended_output_size = unextended_output_shape.DimensionsCount();
- TFLITE_DCHECK_LE(unextended_input_size, N);
- TFLITE_DCHECK_LE(unextended_output_size, N);
- TFLITE_DCHECK_EQ(unextended_output_size, params.perm_count);
- const int input_ext_size = N - unextended_input_size;
- const int output_ext_size = N - unextended_output_size;
- NdArrayDesc<N> input_desc;
- NdArrayDesc<N> output_desc;
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_input_shape),
- &input_desc);
- CopyDimsToDesc(RuntimeShape::ExtendedShape(N, unextended_output_shape),
- &output_desc);
- // The perm data is extended to match the output, each index incremented by
- // the amount of front padding of the input shape.
- int extended_perm[N];
- for (int i = 0; i < N; ++i) {
- extended_perm[i] = i < output_ext_size
- ? i
- : params.perm[i - output_ext_size] + input_ext_size;
- }
- // Permutes the input shape so we don't need to permute the indexes inside
- // the loop. Check to make sure output_dims is matching input_dims.
- NdArrayDesc<N> perm_input_desc;
- for (int k = 0; k < N; ++k) {
- TFLITE_DCHECK_EQ(input_desc.extents[extended_perm[k]],
- output_desc.extents[k]);
- perm_input_desc.extents[k] = input_desc.extents[extended_perm[k]];
- perm_input_desc.strides[k] = input_desc.strides[extended_perm[k]];
- }
- // Naive transpose loop (iterate on output index and compute input index).
- auto tranpose_func = [&](int indexes[N]) {
- output_data[SubscriptToIndex(output_desc, indexes)] =
- input_data[SubscriptToIndex(perm_input_desc, indexes)];
- };
- NDOpsHelper<N>(output_desc, tranpose_func);
- }
- template <typename T, int N = 5>
- void Transpose(const TransposeParams& params,
- const RuntimeShape& unextended_input_shape, const T* input_data,
- const RuntimeShape& unextended_output_shape, T* output_data) {
- // Transpose kernel only does rearranging values not numeric evaluations on
- // each cell. It's safe to implement per size of scalar type and this trick
- // keeps the total code size in a reasonable range.
- switch (sizeof(T)) {
- case 1:
- TransposeImpl<int8_t, N>(params, unextended_input_shape,
- reinterpret_cast<const int8_t*>(input_data),
- unextended_output_shape,
- reinterpret_cast<int8_t*>(output_data));
- break;
- case 2:
- TransposeImpl<int16_t, N>(params, unextended_input_shape,
- reinterpret_cast<const int16_t*>(input_data),
- unextended_output_shape,
- reinterpret_cast<int16_t*>(output_data));
- break;
- case 4:
- TransposeImpl<int32_t, N>(params, unextended_input_shape,
- reinterpret_cast<const int32_t*>(input_data),
- unextended_output_shape,
- reinterpret_cast<int32_t*>(output_data));
- break;
- case 8:
- TransposeImpl<int64_t, N>(params, unextended_input_shape,
- reinterpret_cast<const int64_t*>(input_data),
- unextended_output_shape,
- reinterpret_cast<int64_t*>(output_data));
- break;
- }
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TRANSPOSE_H_
|