| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/kernels/activations.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- namespace {
- void* ReluInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(ReluOpData));
- }
- TfLiteStatus ReluEval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- const ReluOpData& data = *(static_cast<const ReluOpData*>(node->user_data));
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kActivationsInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kActivationsOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32: {
- ReluFloat(tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- }
- case kTfLiteInt8: {
- tflite::ReluQuantized(data, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorData<int8_t>(output));
- return kTfLiteOk;
- }
- default: {
- TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- }
- void* Relu6Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(Relu6OpData));
- }
- TfLiteStatus Relu6Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- const Relu6OpData& data = *(static_cast<const Relu6OpData*>(node->user_data));
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kActivationsInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kActivationsOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32: {
- Relu6Float(tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- }
- case kTfLiteInt8: {
- Relu6Quantized(data.zero_int8, data.six_int8,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- return kTfLiteOk;
- }
- default: {
- TF_LITE_KERNEL_LOG(context, "Only float32 is supported currently, got %s",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- }
- }
- } // namespace
- TfLiteRegistration Register_RELU() {
- return {/*init=*/ReluInit,
- /*free=*/nullptr,
- /*prepare=*/ReluPrepare,
- /*invoke=*/ReluEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- TfLiteRegistration Register_RELU6() {
- return {/*init=*/Relu6Init,
- /*free=*/nullptr,
- /*prepare=*/Relu6Prepare,
- /*invoke=*/Relu6Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace tflite
|