| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include <algorithm>
- #include <cstdint>
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/activations.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- const int kActivationsInputTensor = 0;
- const int kActivationsOutputTensor = 0;
- void ReluQuantized(const ReluOpData& data, const RuntimeShape& input_shape,
- const RuntimeShape& output_shape, const int8_t* input_data,
- int8_t* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const int32_t val = static_cast<int32_t>(input_data[i]);
- int32_t clamped =
- data.params.output_offset +
- MultiplyByQuantizedMultiplier(val - data.params.input_offset,
- data.params.output_multiplier,
- data.params.output_shift);
- clamped = std::max(data.params.quantized_activation_min, clamped);
- clamped = std::min(data.params.quantized_activation_max, clamped);
- output_data[i] = static_cast<int8_t>(clamped);
- }
- }
- template <typename T>
- void CalculateReluOpData(const TfLiteTensor* input, TfLiteTensor* output,
- ReluOpData* data) {
- float act_min = 0.0;
- float act_max = std::numeric_limits<float>::infinity();
- double real_multiplier =
- static_cast<double>(input->params.scale / output->params.scale);
- const RuntimeShape input_shape = GetTensorShape(input);
- const RuntimeShape output_shape = GetTensorShape(output);
- QuantizeMultiplier(real_multiplier, &data->params.output_multiplier,
- &data->params.output_shift);
- data->params.quantized_activation_min = std::max(
- static_cast<int32_t>(std::numeric_limits<T>::min()),
- output->params.zero_point +
- static_cast<int32_t>(roundf(act_min / output->params.scale)));
- data->params.quantized_activation_max =
- act_max == std::numeric_limits<float>::infinity()
- ? static_cast<int32_t>(std::numeric_limits<T>::max())
- : std::min(static_cast<int32_t>(std::numeric_limits<T>::max()),
- output->params.zero_point +
- static_cast<int32_t>(
- roundf(act_max / output->params.scale)));
- data->params.input_offset = input->params.zero_point;
- data->params.output_offset = output->params.zero_point;
- }
- void ReluFloat(const RuntimeShape& input_shape, const float* input_data,
- const RuntimeShape& output_shape, float* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const float val = input_data[i];
- const float lower = 0.0f;
- const float clamped = val < lower ? lower : val;
- output_data[i] = clamped;
- }
- }
- void Relu6Float(const RuntimeShape& input_shape, const float* input_data,
- const RuntimeShape& output_shape, float* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const float val = input_data[i];
- const float upper = 6.0f;
- const float lower = 0.0f;
- const float clamped = val > upper ? upper : val < lower ? lower : val;
- output_data[i] = clamped;
- }
- }
- void Relu6Quantized(int8_t lower, int8_t upper, const RuntimeShape& input_shape,
- const int8_t* input_data, const RuntimeShape& output_shape,
- int8_t* output_data) {
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- for (int i = 0; i < flat_size; ++i) {
- const int8_t val = input_data[i];
- const int8_t clamped = val > upper ? upper : val < lower ? lower : val;
- output_data[i] = clamped;
- }
- }
- TfLiteStatus ReluPrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- ReluOpData* data = static_cast<ReluOpData*>(node->user_data);
- const TfLiteTensor* input = GetInput(context, node, kActivationsInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* output = GetOutput(context, node, kActivationsOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- if (input->type == kTfLiteInt8) {
- CalculateReluOpData<int8_t>(input, output, data);
- }
- return kTfLiteOk;
- }
- TfLiteStatus Relu6Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- Relu6OpData* data = static_cast<Relu6OpData*>(node->user_data);
- const TfLiteTensor* input = GetInput(context, node, kActivationsInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- if (input->type == kTfLiteInt8) {
- data->six_int8 = FloatToQuantizedType<int8_t>(6.0f, input->params.scale,
- input->params.zero_point);
- data->zero_int8 = input->params.zero_point;
- }
- return kTfLiteOk;
- }
- } // namespace tflite
|