| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
- #define TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
- #include <cstdint>
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- struct OpDataConv {
- TfLitePaddingValues padding;
- // Cached tensor zero point values for quantized operations.
- int32_t input_zero_point;
- int32_t filter_zero_point;
- int32_t output_zero_point;
- // The scaling factor from input to output (aka the 'real multiplier') can
- // be represented as a fixed point multiplier plus a left shift.
- int32_t output_multiplier;
- int output_shift;
- // Per channel output multiplier and shift.
- int32_t* per_channel_output_multiplier;
- int32_t* per_channel_output_shift;
- // The range of the fused activation layer. For example for kNone and
- // uint8_t these would be 0 and 255.
- int32_t output_activation_min;
- int32_t output_activation_max;
- };
- extern const int kConvInputTensor;
- extern const int kConvWeightsTensor;
- extern const int kConvBiasTensor;
- extern const int kConvOutputTensor;
- extern const int kConvQuantizedDimension;
- // Returns a ConvParams struct with all the parameters needed for a
- // float computation.
- ConvParams ConvParamsFloat(const TfLiteConvParams& params,
- const OpDataConv& data);
- // Returns a ConvParams struct with all the parameters needed for a
- // quantized computation.
- ConvParams ConvParamsQuantized(const TfLiteConvParams& params,
- const OpDataConv& data);
- TfLiteStatus CalculateOpDataConv(TfLiteContext* context, TfLiteNode* node,
- const TfLiteConvParams& params, int width,
- int height, int filter_width,
- int filter_height, int out_width,
- int out_height, const TfLiteType data_type,
- OpDataConv* data);
- TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node);
- // This is the most generic TfLiteRegistration. The actual supported types may
- // still be target dependent. The only requirement is that every implementation
- // (reference or optimized) must define this function.
- TfLiteRegistration Register_CONV_2D();
- #if defined(XTENSA)
- // Returns a TfLiteRegistration struct for kernel variant that only supports
- // int8 inputs and outputs.
- TfLiteRegistration Register_CONV_2D_INT8REF();
- #else
- inline TfLiteRegistration Register_CONV_2D_INT8REF() {
- return Register_CONV_2D();
- }
- #endif
- } // namespace tflite
- #endif // TENSORFLOW_LITE_MICRO_KERNELS_CONV_H_
|