| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/conv.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/conv.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/padding.h"
- #include "tensorflow/lite/micro/kernels/conv.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- const int kConvInputTensor = 0;
- const int kConvWeightsTensor = 1;
- const int kConvBiasTensor = 2;
- const int kConvOutputTensor = 0;
- // Conv is quantized along dimension 0:
- // https://www.tensorflow.org/lite/performance/quantization_spec
- const int kConvQuantizedDimension = 0;
- // Returns a ConvParams struct with all the parameters needed for a
- // float computation.
- ConvParams ConvParamsFloat(const TfLiteConvParams& params,
- const OpDataConv& data) {
- ConvParams op_params;
- CalculateActivationRange(params.activation, &op_params.float_activation_min,
- &op_params.float_activation_max);
- op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding);
- op_params.padding_values.width = data.padding.width;
- op_params.padding_values.height = data.padding.height;
- op_params.stride_width = params.stride_width;
- op_params.stride_height = params.stride_height;
- op_params.dilation_width_factor = params.dilation_width_factor;
- op_params.dilation_height_factor = params.dilation_height_factor;
- return op_params;
- }
- // Returns a ConvParams struct with all the parameters needed for a
- // quantized computation.
- ConvParams ConvParamsQuantized(const TfLiteConvParams& params,
- const OpDataConv& data) {
- ConvParams op_params;
- op_params.input_offset = -data.input_zero_point;
- op_params.weights_offset = -data.filter_zero_point;
- op_params.output_offset = data.output_zero_point;
- op_params.output_multiplier = data.output_multiplier;
- op_params.output_shift = -data.output_shift;
- op_params.padding_type = tflite::micro::RuntimePaddingType(params.padding);
- op_params.padding_values.height = data.padding.height;
- op_params.padding_values.width = data.padding.width;
- op_params.stride_height = params.stride_height;
- op_params.stride_width = params.stride_width;
- op_params.dilation_height_factor = params.dilation_height_factor;
- op_params.dilation_width_factor = params.dilation_width_factor;
- op_params.quantized_activation_min = data.output_activation_min;
- op_params.quantized_activation_max = data.output_activation_max;
- return op_params;
- }
- TfLiteStatus CalculateOpDataConv(TfLiteContext* context, TfLiteNode* node,
- const TfLiteConvParams& params, int width,
- int height, int filter_width,
- int filter_height, int out_width,
- int out_height, const TfLiteType data_type,
- OpDataConv* data) {
- bool has_bias = node->inputs->size == 3;
- // Check number of inputs/outputs
- TF_LITE_ENSURE(context, has_bias || node->inputs->size == 2);
- TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
- // Matching GetWindowedOutputSize in TensorFlow.
- auto padding = params.padding;
- data->padding = ComputePaddingHeightWidth(
- params.stride_height, params.stride_width, params.dilation_height_factor,
- params.dilation_width_factor, height, width, filter_height, filter_width,
- padding, &out_height, &out_width);
- const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
- TF_LITE_ENSURE(context, filter != nullptr);
- const TfLiteTensor* bias =
- GetOptionalInputTensor(context, node, kConvBiasTensor);
- TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- // Note that quantized inference requires that all tensors have their
- // parameters set. This is usually done during quantized training.
- if (data_type != kTfLiteFloat32) {
- int output_channels = filter->dims->data[kConvQuantizedDimension];
- TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
- context, input, filter, bias, output, params.activation,
- &data->output_multiplier, &data->output_shift,
- &data->output_activation_min, &data->output_activation_max,
- data->per_channel_output_multiplier, data->per_channel_output_shift,
- output_channels));
- }
- data->input_zero_point = input->params.zero_point;
- data->filter_zero_point = filter->params.zero_point;
- data->output_zero_point = output->params.zero_point;
- return kTfLiteOk;
- }
- TfLiteStatus ConvPrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- OpDataConv* data = static_cast<OpDataConv*>(node->user_data);
- const auto& params =
- *(static_cast<const TfLiteConvParams*>(node->builtin_data));
- TfLiteTensor* output = GetOutput(context, node, kConvOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- const TfLiteTensor* input = GetInput(context, node, kConvInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- const TfLiteTensor* filter = GetInput(context, node, kConvWeightsTensor);
- TF_LITE_ENSURE(context, filter != nullptr);
- const int input_width = input->dims->data[2];
- const int input_height = input->dims->data[1];
- const int filter_width = filter->dims->data[2];
- const int filter_height = filter->dims->data[1];
- const int output_width = output->dims->data[2];
- const int output_height = output->dims->data[1];
- // Dynamically allocate per-channel quantization parameters.
- const int num_channels = filter->dims->data[kConvQuantizedDimension];
- data->per_channel_output_multiplier =
- static_cast<int32_t*>(context->AllocatePersistentBuffer(
- context, num_channels * sizeof(int32_t)));
- data->per_channel_output_shift =
- static_cast<int32_t*>(context->AllocatePersistentBuffer(
- context, num_channels * sizeof(int32_t)));
- // All per-channel quantized tensors need valid zero point and scale arrays.
- if (input->type == kTfLiteInt8 || input->type == kTfLiteInt16) {
- TF_LITE_ENSURE_EQ(context, filter->quantization.type,
- kTfLiteAffineQuantization);
- const auto* affine_quantization =
- static_cast<TfLiteAffineQuantization*>(filter->quantization.params);
- TFLITE_DCHECK(affine_quantization != nullptr);
- TFLITE_DCHECK(affine_quantization->scale != nullptr);
- TFLITE_DCHECK(affine_quantization->zero_point != nullptr);
- TF_LITE_ENSURE(context,
- affine_quantization->scale->size == 1 ||
- affine_quantization->scale->size ==
- filter->dims->data[kConvQuantizedDimension]);
- TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
- affine_quantization->zero_point->size);
- }
- TF_LITE_ENSURE_STATUS(CalculateOpDataConv(
- context, node, params, input_width, input_height, filter_width,
- filter_height, output_width, output_height, input->type, data));
- return kTfLiteOk;
- }
- } // namespace tflite
|