| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/cumsum.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- constexpr int kInputTensor = 0;
- constexpr int kAxisTensor = 1;
- constexpr int kOutputTensor = 0;
- constexpr int kCumSumIntegerShift = 20;
- // only used with INT8 tensors
- struct OpData {
- int32_t output_activation_min;
- int32_t output_activation_max;
- int32_t input_offset;
- int32_t output_offset;
- int32_t input_multiplier;
- int32_t output_multiplier;
- int input_shift;
- int output_shift;
- int left_shift;
- };
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const TfLiteTensor* input = GetInput(context, node, kInputTensor);
- const TfLiteTensor* axis = GetInput(context, node, kAxisTensor);
- TF_LITE_ENSURE(context,
- input->type == kTfLiteFloat32 || input->type == kTfLiteInt8);
- TF_LITE_ENSURE_EQ(context, axis->type, kTfLiteInt32);
- TF_LITE_ENSURE_EQ(context, NumElements(axis), 1);
- TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
- TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_EQ(context, input->type, output->type);
- TF_LITE_ENSURE(context, HaveSameShapes(input, output));
- if (output->type == kTfLiteInt8) {
- node->user_data =
- context->AllocatePersistentBuffer(context, sizeof(OpData));
- OpData* data = static_cast<OpData*>(node->user_data);
- // 8bit -> 8bit general quantized path, with general rescalings
- data->input_offset = -input->params.zero_point;
- data->output_offset = output->params.zero_point;
- data->left_shift = kCumSumIntegerShift;
- const double twice_max_input_scale =
- 2 * static_cast<double>(input->params.scale);
- const double real_input_multiplier =
- static_cast<double>(input->params.scale) / twice_max_input_scale;
- const double real_output_multiplier =
- twice_max_input_scale /
- ((1 << data->left_shift) * static_cast<double>(output->params.scale));
- QuantizeMultiplierSmallerThanOneExp(
- real_input_multiplier, &data->input_multiplier, &data->input_shift);
- QuantizeMultiplierSmallerThanOneExp(
- real_output_multiplier, &data->output_multiplier, &data->output_shift);
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, kTfLiteActNone, output, &data->output_activation_min,
- &data->output_activation_max));
- }
- return kTfLiteOk;
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- return CalculateOpData(context, node);
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- const TfLiteEvalTensor* axis_tensor =
- tflite::micro::GetEvalInput(context, node, kAxisTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- auto* cs_params = static_cast<TfLiteCumsumParams*>(node->builtin_data);
- auto input_shape = tflite::micro::GetTensorShape(input);
- int32_t axis = *tflite::micro::GetTensorData<int32_t>(axis_tensor);
- if (axis < 0) axis += input_shape.DimensionsCount();
- if (axis < 0 || axis >= input_shape.DimensionsCount()) {
- TF_LITE_KERNEL_LOG(context, "CUMSUM Invalid axis: %d", axis);
- return kTfLiteError;
- }
- switch (input->type) {
- case kTfLiteFloat32: {
- reference_ops::CumSum(tflite::micro::GetTensorData<float>(input),
- input_shape, axis, cs_params->exclusive,
- cs_params->reverse,
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- } break;
- case kTfLiteInt8: {
- auto* data = static_cast<OpData*>(node->user_data);
- ArithmeticParams params;
- params.left_shift = data->left_shift;
- params.input1_offset = data->input_offset;
- params.input1_multiplier = data->input_multiplier;
- params.input1_shift = data->input_shift;
- params.output_offset = data->output_offset;
- params.output_multiplier = data->output_multiplier;
- params.output_shift = data->output_shift;
- SetActivationParams(data->output_activation_min,
- data->output_activation_max, ¶ms);
- reference_ops::CumSum(params, tflite::micro::GetTensorData<int8_t>(input),
- input_shape, axis, cs_params->exclusive,
- cs_params->reverse,
- tflite::micro::GetTensorData<int8_t>(output));
- return kTfLiteOk;
- } break;
- default: {
- TF_LITE_KERNEL_LOG(context,
- "CUMSUM only supports FLOAT32 and INT8, got %s.",
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- }
- return kTfLiteError;
- }
- } // namespace
- TfLiteRegistration Register_CUMSUM() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace tflite
|