| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/leaky_relu.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- // Input/output tensor index.
- constexpr int kInputTensor = 0;
- constexpr int kOutputTensor = 0;
- struct LeakyReluOpData {
- // quantization parameters
- int32_t output_multiplier_alpha;
- int32_t output_shift_alpha;
- int32_t output_multiplier_identity;
- int32_t output_shift_identity;
- int32_t input_zero_point;
- int32_t output_zero_point;
- };
- template <typename T>
- void QuantizeLeakyRelu(const LeakyReluOpData& data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- LeakyReluParams op_params = {};
- op_params.input_offset = data.input_zero_point;
- op_params.output_offset = data.output_zero_point;
- op_params.output_multiplier_alpha = data.output_multiplier_alpha;
- op_params.output_shift_alpha = data.output_shift_alpha;
- op_params.output_multiplier_identity = data.output_multiplier_identity;
- op_params.output_shift_identity = data.output_shift_identity;
- reference_ops::QuantizeLeakyRelu(op_params,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<T>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<T>(output));
- }
- TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const TfLiteTensor* input;
- TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kInputTensor, &input));
- TfLiteTensor* output;
- TF_LITE_ENSURE_OK(context,
- GetOutputSafe(context, node, kOutputTensor, &output));
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) {
- LeakyReluOpData* data = static_cast<LeakyReluOpData*>(node->user_data);
- const auto* params =
- static_cast<TfLiteLeakyReluParams*>(node->builtin_data);
- data->input_zero_point = input->params.zero_point;
- data->output_zero_point = output->params.zero_point;
- int output_shift_alpha;
- double alpha_multiplier = static_cast<double>(
- input->params.scale * params->alpha / output->params.scale);
- QuantizeMultiplier(alpha_multiplier, &data->output_multiplier_alpha,
- &output_shift_alpha);
- data->output_shift_alpha = static_cast<int32_t>(output_shift_alpha);
- int output_shift_identity;
- double identity_multiplier =
- static_cast<double>(input->params.scale / output->params.scale);
- QuantizeMultiplier(identity_multiplier, &data->output_multiplier_identity,
- &output_shift_identity);
- data->output_shift_identity = static_cast<int32_t>(output_shift_identity);
- }
- return kTfLiteOk;
- }
- void* LeakyReluInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(LeakyReluOpData));
- }
- TfLiteStatus LeakyReluPrepare(TfLiteContext* context, TfLiteNode* node) {
- return CalculateOpData(context, node);
- }
- TfLiteStatus LeakyReluEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- const LeakyReluOpData& data = *static_cast<LeakyReluOpData*>(node->user_data);
- switch (input->type) {
- case kTfLiteFloat32: {
- LeakyReluParams op_params = {};
- const auto* params =
- static_cast<TfLiteLeakyReluParams*>(node->builtin_data);
- op_params.alpha = params->alpha;
- reference_ops::LeakyRelu(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- } break;
- case kTfLiteInt8: {
- QuantizeLeakyRelu<int8_t>(data, input, output);
- return kTfLiteOk;
- } break;
- case kTfLiteInt16: {
- QuantizeLeakyRelu<int16_t>(data, input, output);
- return kTfLiteOk;
- } break;
- default:
- TF_LITE_KERNEL_LOG(
- context, "Only float32, int8 are supported by LEAKY_RELU, got %s.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- return kTfLiteError;
- }
- } // namespace
- TfLiteRegistration Register_LEAKY_RELU() {
- return {/*init=*/LeakyReluInit,
- /*free=*/nullptr,
- /*prepare=*/LeakyReluPrepare,
- /*invoke=*/LeakyReluEval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace tflite
|