| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h"
- #include "tensorflow/lite/kernels/internal/reference/pooling.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/padding.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/pooling.h"
- namespace tflite {
- const int kPoolingInputTensor = 0;
- const int kPoolingOutputTensor = 0;
- TfLiteStatus CalculateOpDataPooling(const TfLiteContext* context,
- const TfLitePoolParams* params,
- const TfLiteTensor* input,
- const TfLiteTensor* output,
- OpDataPooling* data) {
- // input: batch, height, width, channel
- int height = SizeOfDimension(input, 1);
- int width = SizeOfDimension(input, 2);
- int out_height, out_width;
- data->padding = ComputePaddingHeightWidth(
- params->stride_height, params->stride_width,
- /*dilation_rate_height=*/1,
- /*dilation_rate_width=*/1, height, width, params->filter_height,
- params->filter_width, params->padding, &out_height, &out_width);
- return kTfLiteOk;
- }
- TfLiteStatus PoolingPrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
- TFLITE_DCHECK(node->user_data != nullptr);
- OpDataPooling* data = static_cast<OpDataPooling*>(node->user_data);
- const TfLiteTensor* input = GetInput(context, node, kPoolingInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* output = GetOutput(context, node, kPoolingOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE_STATUS(
- CalculateOpDataPooling(context, params, input, output, data));
- if (input->type == kTfLiteFloat32) {
- CalculateActivationRange(params->activation, &data->activation_min_f32,
- &data->activation_max_f32);
- } else if (input->type == kTfLiteInt8) {
- CalculateActivationRangeQuantized(context, params->activation, output,
- &data->activation_min,
- &data->activation_max);
- }
- return kTfLiteOk;
- }
- void AveragePoolingEvalFloat(const TfLiteContext* context,
- const TfLiteNode* node,
- const TfLitePoolParams* params,
- const OpDataPooling* data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data->padding.height;
- op_params.padding_values.width = data->padding.width;
- op_params.float_activation_min = data->activation_min_f32;
- op_params.float_activation_max = data->activation_max_f32;
- reference_ops::AveragePool(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- void AveragePoolingEvalQuantized(TfLiteContext* context, const TfLiteNode* node,
- const TfLitePoolParams* params,
- const OpDataPooling* data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- TFLITE_DCHECK(input->type == kTfLiteInt8);
- PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data->padding.height;
- op_params.padding_values.width = data->padding.width;
- op_params.quantized_activation_min = data->activation_min;
- op_params.quantized_activation_max = data->activation_max;
- reference_integer_ops::AveragePool(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- void MaxPoolingEvalFloat(TfLiteContext* context, TfLiteNode* node,
- TfLitePoolParams* params, const OpDataPooling* data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- tflite::PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data->padding.height;
- op_params.padding_values.width = data->padding.width;
- op_params.float_activation_min = data->activation_min_f32;
- op_params.float_activation_max = data->activation_max_f32;
- reference_ops::MaxPool(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- void MaxPoolingEvalQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLitePoolParams* params,
- const OpDataPooling* data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- tflite::PoolParams op_params;
- op_params.stride_height = params->stride_height;
- op_params.stride_width = params->stride_width;
- op_params.filter_height = params->filter_height;
- op_params.filter_width = params->filter_width;
- op_params.padding_values.height = data->padding.height;
- op_params.padding_values.width = data->padding.width;
- op_params.quantized_activation_min = data->activation_min;
- op_params.quantized_activation_max = data->activation_max;
- reference_integer_ops::MaxPool(op_params,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- } // namespace tflite
|