| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/transpose.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- struct TransposeContext {
- TransposeContext(TfLiteContext* context, TfLiteNode* node) {
- input = GetInput(context, node, 0);
- perm = GetInput(context, node, 1);
- output = GetOutput(context, node, 0);
- }
- const TfLiteTensor* input;
- const TfLiteTensor* perm;
- TfLiteTensor* output;
- };
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- TransposeContext op_context(context, node);
- // Ensure validity of input tensor.
- TF_LITE_ENSURE_MSG(context, NumDimensions(op_context.input) <= 5,
- "Transpose op only supports 1D-5D input arrays.");
- TF_LITE_ENSURE_TYPES_EQ(context, op_context.input->type,
- op_context.output->type);
- int dims = NumDimensions(op_context.input);
- const int32_t* perm_data = GetTensorData<int32_t>(op_context.perm);
- // Ensure validity of the permutations tensor as a 1D tensor.
- TF_LITE_ENSURE_EQ(context, NumDimensions(op_context.perm), 1);
- TF_LITE_ENSURE_EQ(context, op_context.perm->dims->data[0], dims);
- for (int idx = 0; idx < dims; ++idx) {
- TF_LITE_ENSURE_MSG(context, (perm_data[idx] >= 0 && perm_data[idx] < dims),
- "Transpose op permutations array is out of bounds.");
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TransposeContext op_context(context, node);
- const int32_t* perm_data = GetTensorData<int32_t>(op_context.perm);
- const int size = op_context.perm->dims->data[0];
- TransposeParams params;
- params.perm_count = size;
- for (int i = 0; i < size; ++i) {
- params.perm[i] = perm_data[i];
- }
- // Transpose kernel only does rearranging values not numeric evaluations
- // on each cell. It's safe to implement per size of scalar type and this
- // trick keeps the total code size in a reasonable range.
- switch (op_context.input->type) {
- case kTfLiteFloat32:
- reference_ops::Transpose(params, GetTensorShape(op_context.input),
- GetTensorData<float>(op_context.input),
- GetTensorShape(op_context.output),
- GetTensorData<float>(op_context.output));
- break;
- case kTfLiteInt8:
- reference_ops::Transpose(params, GetTensorShape(op_context.input),
- GetTensorData<int8_t>(op_context.input),
- GetTensorShape(op_context.output),
- GetTensorData<int8_t>(op_context.output));
- break;
- default:
- TF_LITE_KERNEL_LOG(context,
- "Type %s is currently not supported by Transpose. "
- "Only float32 and int8 is supported",
- TfLiteTypeGetName(op_context.input->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_TRANSPOSE() {
- return {/*init=*/nullptr,
- /*free=*/nullptr,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- }
- } // namespace tflite
|