| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384 |
- // Copyright 2015 Google Inc. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // fixedpoint_SSE.h: optimized SSE specializations of the templates
- // in fixedpoint.h.
- #ifndef GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
- #define GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
- #include <smmintrin.h>
- #include "fixedpoint.h"
- namespace gemmlowp {
- // SSE intrinsics are not finely typed: there is a single __m128i vector
- // type that does not distinguish between "int32x4" and "int16x8" use
- // cases, unlike the NEON equivalents. Because we had initially focused
- // on int32x4, we did not pay attention and specialized these fixedpoint
- // templates directly for __m128i hardcoding the int32x4 semantics,
- // not leaving room for int16x8 semantics. Amending that by adding a separate
- // data type, int16x8_m128i, that wraps __m128i while being a separate
- // type.
- struct int16x8_m128i {
- int16x8_m128i() {}
- explicit int16x8_m128i(__m128i w) : v(w) {}
- ~int16x8_m128i() {}
- __m128i v;
- };
- template <>
- struct FixedPointRawTypeTraits<__m128i> {
- typedef std::int32_t ScalarRawType;
- static constexpr int kLanes = 4;
- };
- template <>
- struct FixedPointRawTypeTraits<int16x8_m128i> {
- typedef std::int16_t ScalarRawType;
- static constexpr int kLanes = 8;
- };
- template <>
- inline __m128i BitAnd(__m128i a, __m128i b) {
- return _mm_and_si128(a, b);
- }
- template <>
- inline int16x8_m128i BitAnd(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_and_si128(a.v, b.v));
- }
- template <>
- inline __m128i BitOr(__m128i a, __m128i b) {
- return _mm_or_si128(a, b);
- }
- template <>
- inline int16x8_m128i BitOr(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_or_si128(a.v, b.v));
- }
- template <>
- inline __m128i BitXor(__m128i a, __m128i b) {
- return _mm_xor_si128(a, b);
- }
- template <>
- inline int16x8_m128i BitXor(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_xor_si128(a.v, b.v));
- }
- template <>
- inline __m128i BitNot(__m128i a) {
- return _mm_andnot_si128(a, _mm_set1_epi32(-1));
- }
- template <>
- inline int16x8_m128i BitNot(int16x8_m128i a) {
- return int16x8_m128i(_mm_andnot_si128(a.v, _mm_set1_epi16(-1)));
- }
- template <>
- inline __m128i Add(__m128i a, __m128i b) {
- return _mm_add_epi32(a, b);
- }
- template <>
- inline int16x8_m128i Add(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_add_epi16(a.v, b.v));
- }
- template <>
- inline __m128i Mul(__m128i a, __m128i b) {
- return _mm_mullo_epi32(a, b);
- }
- template <>
- inline int16x8_m128i Mul(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_mullo_epi16(a.v, b.v));
- }
- template <>
- inline __m128i Sub(__m128i a, __m128i b) {
- return _mm_sub_epi32(a, b);
- }
- template <>
- inline int16x8_m128i Sub(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_sub_epi16(a.v, b.v));
- }
- template <>
- inline __m128i Neg(__m128i a) {
- return _mm_sign_epi32(a, _mm_set1_epi32(-1));
- }
- template <>
- inline int16x8_m128i Neg(int16x8_m128i a) {
- return int16x8_m128i(_mm_sign_epi16(a.v, _mm_set1_epi16(-1)));
- }
- template <>
- inline __m128i ShiftLeft(__m128i a, int offset) {
- return _mm_slli_epi32(a, offset);
- }
- template <>
- inline int16x8_m128i ShiftLeft(int16x8_m128i a, int offset) {
- return int16x8_m128i(_mm_slli_epi16(a.v, offset));
- }
- template <>
- inline __m128i ShiftRight(__m128i a, int offset) {
- return _mm_srai_epi32(a, offset);
- }
- template <>
- inline int16x8_m128i ShiftRight(int16x8_m128i a, int offset) {
- return int16x8_m128i(_mm_srai_epi16(a.v, offset));
- }
- template <>
- inline __m128i SelectUsingMask(__m128i if_mask, __m128i then_val,
- __m128i else_val) {
- // borrowed from Intel's arm_neon_sse.h header.
- return _mm_or_si128(_mm_and_si128(if_mask, then_val),
- _mm_andnot_si128(if_mask, else_val));
- }
- template <>
- inline int16x8_m128i SelectUsingMask(int16x8_m128i if_mask,
- int16x8_m128i then_val,
- int16x8_m128i else_val) {
- // borrowed from Intel's arm_neon_sse.h header.
- return int16x8_m128i(SelectUsingMask(if_mask.v, then_val.v, else_val.v));
- }
- template <>
- inline __m128i MaskIfEqual(__m128i a, __m128i b) {
- return _mm_cmpeq_epi32(a, b);
- }
- template <>
- inline int16x8_m128i MaskIfEqual(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_cmpeq_epi16(a.v, b.v));
- }
- template <>
- inline __m128i MaskIfNotEqual(__m128i a, __m128i b) {
- return BitNot(MaskIfEqual(a, b));
- }
- template <>
- inline int16x8_m128i MaskIfNotEqual(int16x8_m128i a, int16x8_m128i b) {
- return BitNot(MaskIfEqual(a, b));
- }
- template <>
- inline __m128i MaskIfZero(__m128i a) {
- return MaskIfEqual(a, _mm_set1_epi32(0));
- }
- template <>
- inline int16x8_m128i MaskIfZero(int16x8_m128i a) {
- return MaskIfEqual(a, int16x8_m128i(_mm_set1_epi16(0)));
- }
- template <>
- inline __m128i MaskIfNonZero(__m128i a) {
- return MaskIfNotEqual(a, _mm_set1_epi32(0));
- }
- template <>
- inline int16x8_m128i MaskIfNonZero(int16x8_m128i a) {
- return MaskIfNotEqual(a, int16x8_m128i(_mm_set1_epi16(0)));
- }
- template <>
- inline __m128i MaskIfGreaterThan(__m128i a, __m128i b) {
- return _mm_cmpgt_epi32(a, b);
- }
- template <>
- inline int16x8_m128i MaskIfGreaterThan(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_cmpgt_epi16(a.v, b.v));
- }
- template <>
- inline __m128i MaskIfLessThan(__m128i a, __m128i b) {
- return _mm_cmplt_epi32(a, b);
- }
- template <>
- inline int16x8_m128i MaskIfLessThan(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_cmplt_epi16(a.v, b.v));
- }
- template <>
- inline __m128i MaskIfGreaterThanOrEqual(__m128i a, __m128i b) {
- return BitNot(MaskIfLessThan(a, b));
- }
- template <>
- inline int16x8_m128i MaskIfGreaterThanOrEqual(int16x8_m128i a,
- int16x8_m128i b) {
- return BitNot(MaskIfLessThan(a, b));
- }
- template <>
- inline __m128i MaskIfLessThanOrEqual(__m128i a, __m128i b) {
- return BitNot(MaskIfGreaterThan(a, b));
- }
- template <>
- inline int16x8_m128i MaskIfLessThanOrEqual(int16x8_m128i a, int16x8_m128i b) {
- return BitNot(MaskIfGreaterThan(a, b));
- }
- /* Assumptions:
- - All and Any are used on masks.
- - masks are all_ones for true lanes, all_zeroes otherwise.
- Hence, All means all 128bits set, and Any means any bit set.
- */
- template <>
- inline bool All(__m128i a) {
- return _mm_testc_si128(a, a);
- }
- template <>
- inline bool All(int16x8_m128i a) {
- return _mm_testc_si128(a.v, a.v);
- }
- template <>
- inline bool Any(__m128i a) {
- return !_mm_testz_si128(a, a);
- }
- template <>
- inline bool Any(int16x8_m128i a) {
- return !_mm_testz_si128(a.v, a.v);
- }
- template <>
- inline __m128i RoundingHalfSum(__m128i a, __m128i b) {
- /* __m128i round_bit_mask, a_over_2, b_over_2, round_bit, sum; */
- /* We divide the inputs before the add to avoid the overflow and costly test
- */
- /* of checking if an overflow occured on signed add */
- /* round_bit_mask = _mm_set1_epi32(1); */
- /* a_over_2 = _mm_srai_epi32(a, 1); */
- /* b_over_2 = _mm_srai_epi32(b, 1); */
- /* sum = Add(a_over_2, b_over_2); */
- /* round_bit = _mm_sign_epi32(BitAnd(BitOr(a,b), round_bit_mask), sum); */
- /* return Add(sum, round_bit); */
- /* Other possibility detecting overflow and xor the sign if an overflow
- * happened*/
- __m128i one, sign_bit_mask, sum, rounded_half_sum, overflow, result;
- one = _mm_set1_epi32(1);
- sign_bit_mask = _mm_set1_epi32(0x80000000);
- sum = Add(a, b);
- rounded_half_sum = _mm_srai_epi32(Add(sum, one), 1);
- overflow =
- BitAnd(BitAnd(BitXor(a, rounded_half_sum), BitXor(b, rounded_half_sum)),
- sign_bit_mask);
- result = BitXor(rounded_half_sum, overflow);
- return result;
- }
- template <>
- inline int16x8_m128i RoundingHalfSum(int16x8_m128i a, int16x8_m128i b) {
- // Idea: go to unsigned to use _mm_avg_epu16,
- // borrowed from Intel's arm_neon_sse.h header.
- __m128i constant_neg_32768 = _mm_set1_epi16(-32768);
- __m128i a_unsigned = _mm_sub_epi16(a.v, constant_neg_32768);
- __m128i b_unsigned = _mm_sub_epi16(b.v, constant_neg_32768);
- __m128i avg_unsigned = _mm_avg_epu16(a_unsigned, b_unsigned);
- __m128i avg = _mm_add_epi16(avg_unsigned, constant_neg_32768);
- return int16x8_m128i(avg);
- }
- template <>
- inline __m128i SaturatingRoundingDoublingHighMul(__m128i a, __m128i b) {
- __m128i min, saturation_mask, a0_a2, a1_a3, b0_b2, b1_b3;
- __m128i a0b0_a2b2, a1b1_a3b3, a0b0_a2b2_rounded, a1b1_a3b3_rounded;
- __m128i a0b0_a2b2_rounded_2x, a1b1_a3b3_rounded_2x, result;
- __m128i nudge;
- // saturation only happen if a == b == INT_MIN
- min = _mm_set1_epi32(std::numeric_limits<std::int32_t>::min());
- saturation_mask = BitAnd(MaskIfEqual(a, b), MaskIfEqual(a, min));
- // a = a0 | a1 | a2 | a3
- // b = b0 | b1 | b2 | b3
- a0_a2 = a;
- a1_a3 = _mm_srli_si128(a, 4);
- b0_b2 = b;
- b1_b3 = _mm_srli_si128(b, 4);
- a0b0_a2b2 = _mm_mul_epi32(a0_a2, b0_b2);
- a1b1_a3b3 = _mm_mul_epi32(a1_a3, b1_b3);
- // do the rounding and take into account that it will be doubled
- nudge = _mm_set1_epi64x(1 << 30);
- a0b0_a2b2_rounded = _mm_add_epi64(a0b0_a2b2, nudge);
- a1b1_a3b3_rounded = _mm_add_epi64(a1b1_a3b3, nudge);
- // do the doubling
- a0b0_a2b2_rounded_2x = _mm_slli_epi64(a0b0_a2b2_rounded, 1);
- a1b1_a3b3_rounded_2x = _mm_slli_epi64(a1b1_a3b3_rounded, 1);
- // get the high part of the products
- result = _mm_blend_epi16(_mm_srli_si128(a0b0_a2b2_rounded_2x, 4),
- a1b1_a3b3_rounded_2x, 0xcc);
- // saturate those which overflowed
- return SelectUsingMask(saturation_mask, min, result);
- }
- template <>
- inline int16x8_m128i SaturatingRoundingDoublingHighMul(int16x8_m128i a,
- int16x8_m128i b) {
- // Idea: use _mm_mulhrs_epi16 then saturate with a bit-operation,
- // borrowed from Intel's arm_neon_sse.h header.
- __m128i result_unsaturated = _mm_mulhrs_epi16(a.v, b.v);
- __m128i saturation_mask =
- _mm_cmpeq_epi16(result_unsaturated, _mm_set1_epi16(0x8000));
- __m128i result = _mm_xor_si128(result_unsaturated, saturation_mask);
- return int16x8_m128i(result);
- }
- template <>
- inline __m128i Dup<__m128i>(std::int32_t x) {
- return _mm_set1_epi32(x);
- }
- template <>
- inline int16x8_m128i Dup<int16x8_m128i>(std::int16_t x) {
- return int16x8_m128i(_mm_set1_epi16(x));
- }
- // So far this is only needed for int16.
- template <>
- inline int16x8_m128i SaturatingAdd(int16x8_m128i a, int16x8_m128i b) {
- return int16x8_m128i(_mm_adds_epi16(a.v, b.v));
- }
- } // end namespace gemmlowp
- #endif // GEMMLOWP_INTERNAL_FIXEDPOINT_SSE_H_
|