| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include <stddef.h>
- #include <cstring>
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/memory_helpers.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- #include "tensorflow/lite/micro/micro_graph.h"
- #include "tensorflow/lite/micro/micro_resource_variable.h"
- #include "tensorflow/lite/schema/schema_generated.h"
- namespace tflite {
- namespace {
- constexpr int kInputVariableId = 0;
- constexpr int kInputValue = 1;
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 0);
- // This must be a TfLiteEvalTensor despite this being in Prepare, because
- // CreateTensor allocates a temp tensor from the flatbuffer, which does not
- // contain the correct ID generated within the VAR_HANDLE op. EvalTensors are
- // all allocated during StartModelAllocation which happens before
- // init/prepare, and VAR_HANDLE Prepare() references its own op_data in the
- // TfLiteEvalTensor, so reading the ID here is valid.
- const TfLiteEvalTensor* input_resource_id_tensor =
- tflite::micro::GetEvalInput(context, node, kInputVariableId);
- TFLITE_DCHECK(input_resource_id_tensor != nullptr);
- TF_LITE_ENSURE(context, (input_resource_id_tensor->type == kTfLiteResource ||
- input_resource_id_tensor->type == kTfLiteInt32));
- TF_LITE_ENSURE_EQ(context, NumElements(input_resource_id_tensor->dims), 1);
- tflite::MicroContext* micro_context = tflite::GetMicroContext(context);
- TfLiteTensor* input_value =
- micro_context->AllocateTempInputTensor(node, kInputValue);
- TFLITE_DCHECK(input_value != nullptr);
- MicroGraph& graph_info = micro_context->graph();
- MicroResourceVariables* resources = graph_info.GetResourceVariables();
- TF_LITE_ENSURE_OK(context,
- resources->Allocate(input_resource_id_tensor->data.i32[0],
- context, input_value));
- micro_context->DeallocateTempTfLiteTensor(input_value);
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input_id =
- tflite::micro::GetEvalInput(context, node, kInputVariableId);
- TFLITE_DCHECK(input_id != nullptr);
- const TfLiteEvalTensor* input_value =
- tflite::micro::GetEvalInput(context, node, kInputValue);
- TFLITE_DCHECK(input_value != nullptr);
- tflite::MicroContext* micro_context = tflite::GetMicroContext(context);
- MicroGraph& graph_info = micro_context->graph();
- MicroResourceVariables* resources = graph_info.GetResourceVariables();
- if (resources == nullptr) {
- MicroPrintf(
- "ASSIGN_VARIABLE requires resource variables. Please create "
- "ResourceVariables and pass it to the interpreter.");
- return kTfLiteError;
- }
- TF_LITE_ENSURE_OK(context,
- resources->Assign(input_id->data.i32[0], input_value));
- return kTfLiteOk;
- }
- } // namespace.
- TfLiteRegistration Register_ASSIGN_VARIABLE() {
- return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
- }
- } // namespace tflite
|