| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- /* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/div.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- constexpr int kInputTensor1 = 0;
- constexpr int kInputTensor2 = 1;
- constexpr int kOutputTensor = 0;
- struct OpDataDiv {
- // Parameters used in the quantized paths where the output is 8bit
- int32_t input1_zero_point;
- int32_t input2_zero_point;
- int32_t output_zero_point;
- int32_t output_activation_min;
- int32_t output_activation_max;
- // Parameters used in all quantized paths
- int32_t output_multiplier;
- int output_shift;
- };
- TfLiteStatus CalculateOpDataDiv(TfLiteContext* context, TfLiteTensor* input1,
- TfLiteTensor* input2, TfLiteTensor* output,
- TfLiteDivParams* params, OpDataDiv* data) {
- TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
- TF_LITE_ENSURE_TYPES_EQ(context, input1->type, output->type);
- if (output->type == kTfLiteInt8) {
- TF_LITE_ENSURE_STATUS(CalculateActivationRangeQuantized(
- context, params->activation, output, &data->output_activation_min,
- &data->output_activation_max));
- const double real_multiplier = static_cast<double>(
- input1->params.scale / (input2->params.scale * output->params.scale));
- QuantizeMultiplier(real_multiplier, &data->output_multiplier,
- &data->output_shift);
- data->input1_zero_point = input1->params.zero_point;
- data->input2_zero_point = input2->params.zero_point;
- data->output_zero_point = output->params.zero_point;
- }
- return kTfLiteOk;
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpDataDiv));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input1 =
- micro_context->AllocateTempInputTensor(node, kInputTensor1);
- TF_LITE_ENSURE(context, input1 != nullptr);
- TfLiteTensor* input2 =
- micro_context->AllocateTempInputTensor(node, kInputTensor2);
- TF_LITE_ENSURE(context, input2 != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- OpDataDiv* data = static_cast<OpDataDiv*>(node->user_data);
- auto* params = reinterpret_cast<TfLiteDivParams*>(node->builtin_data);
- TF_LITE_ENSURE_STATUS(
- CalculateOpDataDiv(context, input1, input2, output, params, data));
- micro_context->DeallocateTempTfLiteTensor(input1);
- micro_context->DeallocateTempTfLiteTensor(input2);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- void EvalDiv(TfLiteContext* context, TfLiteNode* node, TfLiteDivParams* params,
- const OpDataDiv* data, const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
- tflite::ArithmeticParams op_params = {};
- #define TF_LITE_DIV(type, opname, data_type) \
- data_type output_activation_min, output_activation_max; \
- CalculateActivationRange(params->activation, &output_activation_min, \
- &output_activation_max); \
- SetActivationParams(output_activation_min, output_activation_max, \
- &op_params); \
- type::opname(op_params, tflite::micro::GetTensorShape(input1), \
- tflite::micro::GetTensorData<data_type>(input1), \
- tflite::micro::GetTensorShape(input2), \
- tflite::micro::GetTensorData<data_type>(input2), \
- tflite::micro::GetTensorShape(output), \
- tflite::micro::GetTensorData<data_type>(output))
- bool requires_broadcast = reference_ops::ProcessBroadcastShapes(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorShape(input2), &op_params);
- if (requires_broadcast) {
- TF_LITE_DIV(reference_ops, BroadcastDivSlow, float);
- } else {
- TF_LITE_DIV(reference_ops, Div, float);
- }
- #undef TF_LITE_DIV
- }
- TfLiteStatus EvalQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLiteDivParams* params, const OpDataDiv* data,
- const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2,
- TfLiteEvalTensor* output) {
- tflite::ArithmeticParams op_params = {};
- #define TF_LITE_DIV(type, opname, dtype) \
- type::opname(op_params, tflite::micro::GetTensorShape(input1), \
- tflite::micro::GetTensorData<dtype>(input1), \
- tflite::micro::GetTensorShape(input2), \
- tflite::micro::GetTensorData<dtype>(input2), \
- tflite::micro::GetTensorShape(output), \
- tflite::micro::GetTensorData<dtype>(output))
- if (input1->type == kTfLiteInt8 && input2->type == kTfLiteInt8 &&
- output->type == kTfLiteInt8) {
- SetActivationParams(data->output_activation_min,
- data->output_activation_max, &op_params);
- op_params.input1_offset = -data->input1_zero_point;
- op_params.input2_offset = -data->input2_zero_point;
- op_params.output_offset = data->output_zero_point;
- op_params.output_multiplier = data->output_multiplier;
- op_params.output_shift = data->output_shift;
- bool requires_broadcast = reference_ops::ProcessBroadcastShapes(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorShape(input2), &op_params);
- if (requires_broadcast) {
- TF_LITE_DIV(reference_ops, BroadcastDivSlow, int8_t);
- } else {
- TF_LITE_DIV(reference_ops, Div, int8_t);
- }
- #undef TF_LITE_DIV
- } else {
- MicroPrintf("Unsupported combination of input and output types in DIV.");
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = static_cast<TfLiteDivParams*>(node->builtin_data);
- TFLITE_DCHECK(node->user_data != nullptr);
- auto* data = static_cast<OpDataDiv*>(node->user_data);
- const TfLiteEvalTensor* input1 =
- tflite::micro::GetEvalInput(context, node, kInputTensor1);
- const TfLiteEvalTensor* input2 =
- tflite::micro::GetEvalInput(context, node, kInputTensor2);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- if (output->type == kTfLiteFloat32) {
- EvalDiv(context, node, params, data, input1, input2, output);
- } else if (output->type == kTfLiteInt8) {
- TF_LITE_ENSURE_OK(context, EvalQuantized(context, node, params, data,
- input1, input2, output));
- } else {
- MicroPrintf(
- "DIV only supports FLOAT32, quantized INT8 "
- "now, got type %s (%d).",
- TfLiteTypeGetName(output->type), output->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_DIV() {
- return tflite::micro::RegisterOp(Init, Prepare, Eval);
- }
- } // namespace tflite
|