| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158 |
- /* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/kernels/fully_connected.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/fully_connected.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context,
- sizeof(OpDataFullyConnected));
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- MicroContext* micro_context = GetMicroContext(context);
- TFLITE_DCHECK(node->user_data != nullptr);
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* data = static_cast<OpDataFullyConnected*>(node->user_data);
- const auto params =
- static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
- TfLiteTensor* input =
- micro_context->AllocateTempInputTensor(node, kFullyConnectedInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* filter = micro_context->AllocateTempInputTensor(
- node, kFullyConnectedWeightsTensor);
- TF_LITE_ENSURE(context, filter != nullptr);
- TfLiteTensor* bias =
- micro_context->AllocateTempInputTensor(node, kFullyConnectedBiasTensor);
- TfLiteTensor* output = micro_context->AllocateTempOutputTensor(
- node, kFullyConnectedOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- TF_LITE_ENSURE_OK(context, CalculateOpDataFullyConnected(
- context, params->activation, input->type,
- input, filter, bias, output, data));
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(filter);
- if (bias != nullptr) {
- micro_context->DeallocateTempTfLiteTensor(bias);
- }
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- const auto* params =
- static_cast<const TfLiteFullyConnectedParams*>(node->builtin_data);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kFullyConnectedInputTensor);
- const TfLiteEvalTensor* filter =
- tflite::micro::GetEvalInput(context, node, kFullyConnectedWeightsTensor);
- const TfLiteEvalTensor* bias =
- tflite::micro::GetEvalInput(context, node, kFullyConnectedBiasTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kFullyConnectedOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- const auto& data =
- *(static_cast<const OpDataFullyConnected*>(node->user_data));
- // Checks in Prepare ensure input, output and filter types are all the same.
- switch (input->type) {
- case kTfLiteFloat32: {
- const float* bias_data =
- nullptr != bias ? tflite::micro::GetTensorData<float>(bias) : nullptr;
- tflite::reference_ops::FullyConnected(
- FullyConnectedParamsFloat(params->activation),
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<float>(filter),
- tflite::micro::GetTensorShape(bias), bias_data,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- break;
- }
- case kTfLiteInt8: {
- const int32_t* bias_data =
- nullptr != bias ? tflite::micro::GetTensorData<int32_t>(bias)
- : nullptr;
- tflite::reference_integer_ops::FullyConnected(
- FullyConnectedParamsQuantized(data),
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<int8_t>(filter),
- tflite::micro::GetTensorShape(bias), bias_data,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- }
- case kTfLiteInt16: {
- const int64_t* bias_data =
- nullptr != bias ? tflite::micro::GetTensorData<int64_t>(bias)
- : nullptr;
- tflite::reference_integer_ops::FullyConnected(
- FullyConnectedParamsQuantized(data),
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int16_t>(input),
- tflite::micro::GetTensorShape(filter),
- tflite::micro::GetTensorData<int8_t>(filter),
- tflite::micro::GetTensorShape(bias), bias_data,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output));
- break;
- }
- default: {
- MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type),
- input->type);
- return kTfLiteError;
- }
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_FULLY_CONNECTED() {
- return tflite::micro::RegisterOp(Init, Prepare, Eval);
- }
- } // namespace tflite
|