| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/leaky_relu.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/leaky_relu.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- namespace tflite {
- template <typename T>
- void QuantizeLeakyRelu(const LeakyReluOpData& data,
- const TfLiteEvalTensor* input,
- TfLiteEvalTensor* output) {
- LeakyReluParams op_params = {};
- op_params.input_offset = data.input_zero_point;
- op_params.output_offset = data.output_zero_point;
- op_params.output_multiplier_alpha = data.output_multiplier_alpha;
- op_params.output_shift_alpha = data.output_shift_alpha;
- op_params.output_multiplier_identity = data.output_multiplier_identity;
- op_params.output_shift_identity = data.output_shift_identity;
- reference_ops::QuantizeLeakyRelu(op_params,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<T>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<T>(output));
- }
- void* LeakyReluInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(LeakyReluOpData));
- }
- TfLiteStatus LeakyReluEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- const LeakyReluOpData& data = *static_cast<LeakyReluOpData*>(node->user_data);
- switch (input->type) {
- case kTfLiteFloat32: {
- LeakyReluParams op_params = {};
- const auto* params =
- static_cast<TfLiteLeakyReluParams*>(node->builtin_data);
- op_params.alpha = params->alpha;
- reference_ops::LeakyRelu(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- } break;
- case kTfLiteInt8: {
- QuantizeLeakyRelu<int8_t>(data, input, output);
- return kTfLiteOk;
- } break;
- case kTfLiteInt16: {
- QuantizeLeakyRelu<int16_t>(data, input, output);
- return kTfLiteOk;
- } break;
- default:
- MicroPrintf("Only float32, int8 are supported by LEAKY_RELU, got %s.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- return kTfLiteError;
- }
- TfLiteRegistration Register_LEAKY_RELU() {
- return tflite::micro::RegisterOp(LeakyReluInit, LeakyReluPrepare,
- LeakyReluEval);
- }
- } // namespace tflite
|