| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h"
- #include "tensorflow/lite/kernels/internal/reference/logistic.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/logistic.h"
- namespace tflite {
- const int kLogisticInputTensor = 0;
- const int kLogisticOutputTensor = 0;
- TfLiteStatus CalculateArithmeticOpDataLogistic(TfLiteContext* context,
- TfLiteNode* node,
- OpDataLogistic* data) {
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input =
- micro_context->AllocateTempInputTensor(node, kLogisticInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kLogisticOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- if (input->type == kTfLiteInt8) {
- TF_LITE_ENSURE_EQ(context, output->params.zero_point,
- std::numeric_limits<int8_t>::min());
- static constexpr int kInputIntegerBits = 4;
- const double input_real_multiplier =
- static_cast<double>(input->params.scale) *
- static_cast<double>(1 << (31 - kInputIntegerBits));
- data->input_zero_point = input->params.zero_point;
- const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
- data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
- data->input_range_radius =
- CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
- }
- if (input->type == kTfLiteInt16) {
- static constexpr int kInputIntegerBits = 3;
- static constexpr int kOutputFractionalBits = 15;
- // See comments in TanhPrepare about requiring zero_point==0
- // and a power-of-two ("POT") scale.
- TF_LITE_ENSURE_EQ(context, input->params.zero_point, 0);
- TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
- int input_scale_log2_rounded;
- bool param_scale_pot =
- CheckedLog2(input->params.scale, &input_scale_log2_rounded);
- data->input_left_shift =
- (15 - kInputIntegerBits) + input_scale_log2_rounded;
- param_scale_pot &= (data->input_left_shift == 0);
- if (param_scale_pot) {
- data->input_multiplier = 0;
- } else {
- // Calculate multiplier to change input scale to 1/(3*4096)
- // as required by the table lookup.
- // In this scaling +/-2^17 represents +/-10.7
- double multiplier =
- static_cast<double>(input->params.scale) * 4096.0 * 3.0;
- data->input_left_shift = 0;
- while (multiplier <= 32767.0 / 2.0 && data->input_left_shift <= 30) {
- data->input_left_shift++;
- multiplier = multiplier * 2.0;
- }
- data->input_multiplier = static_cast<int32_t>(multiplier);
- }
- int output_scale_log2_rounded;
- TF_LITE_ENSURE(
- context, CheckedLog2(output->params.scale, &output_scale_log2_rounded));
- TF_LITE_ENSURE_EQ(context, output_scale_log2_rounded,
- -kOutputFractionalBits);
- }
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus LogisticPrepare(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpDataLogistic* data = static_cast<OpDataLogistic*>(node->user_data);
- return CalculateArithmeticOpDataLogistic(context, node, data);
- }
- } // namespace tflite
|