| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/pooling.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/pooling.h"
- namespace tflite {
- namespace {
- TfLiteStatus AverageEval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpDataPooling* data =
- static_cast<const OpDataPooling*>(node->user_data);
- const TfLiteEvalTensor* input =
- micro::GetEvalInput(context, node, kPoolingInputTensor);
- TfLiteEvalTensor* output =
- micro::GetEvalOutput(context, node, kPoolingOutputTensor);
- // Inputs and outputs share the same type, guaranteed by the converter.
- switch (input->type) {
- case kTfLiteFloat32:
- AveragePoolingEvalFloat(context, node, params, data, input, output);
- break;
- case kTfLiteInt8:
- AveragePoolingEvalQuantized(context, node, params, data, input, output);
- break;
- default:
- MicroPrintf("Input type %s is not currently supported",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus MaxEval(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->builtin_data != nullptr);
- auto* params = reinterpret_cast<TfLitePoolParams*>(node->builtin_data);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpDataPooling* data =
- static_cast<const OpDataPooling*>(node->user_data);
- const TfLiteEvalTensor* input =
- micro::GetEvalInput(context, node, kPoolingInputTensor);
- TfLiteEvalTensor* output =
- micro::GetEvalOutput(context, node, kPoolingOutputTensor);
- switch (input->type) {
- case kTfLiteFloat32:
- MaxPoolingEvalFloat(context, node, params, data, input, output);
- break;
- case kTfLiteInt8:
- MaxPoolingEvalQuantized(context, node, params, data, input, output);
- break;
- default:
- MicroPrintf("Type %s not currently supported.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpDataPooling));
- }
- } // namespace
- TfLiteRegistration Register_AVERAGE_POOL_2D() {
- return tflite::micro::RegisterOp(Init, PoolingPrepare, AverageEval);
- }
- TfLiteRegistration Register_MAX_POOL_2D() {
- return tflite::micro::RegisterOp(Init, PoolingPrepare, MaxEval);
- }
- } // namespace tflite
|