| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include <limits>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/quantize.h"
- #include "tensorflow/lite/kernels/internal/reference/requantize.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/quantize.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- TfLiteStatus PrepareQuantizeReference(TfLiteContext* context,
- TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- auto* data = static_cast<OpDataQuantizeReference*>(node->user_data);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
- TF_LITE_ENSURE(context, output != nullptr);
- // TODO(b/128934713): Add support for fixed-point per-channel quantization.
- // Currently this only support affine per-layer quantization.
- TF_LITE_ENSURE_EQ(context, output->quantization.type,
- kTfLiteAffineQuantization);
- const auto* affine_quantization =
- reinterpret_cast<TfLiteAffineQuantization*>(output->quantization.params);
- TF_LITE_ENSURE(context, affine_quantization);
- TF_LITE_ENSURE(context, affine_quantization->scale);
- TF_LITE_ENSURE(context, affine_quantization->scale->size == 1);
- TF_LITE_ENSURE(
- context, input->type == kTfLiteFloat32 || input->type == kTfLiteInt32 ||
- input->type == kTfLiteInt16 || input->type == kTfLiteInt8 ||
- input->type == kTfLiteUInt8);
- TF_LITE_ENSURE(context, output->type == kTfLiteInt8 ||
- output->type == kTfLiteInt16 ||
- output->type == kTfLiteInt32 ||
- output->type == kTfLiteUInt8);
- if ((input->type == kTfLiteInt16 && output->type == kTfLiteInt8) ||
- (input->type == kTfLiteInt8 && output->type == kTfLiteInt8) ||
- (input->type == kTfLiteInt8 && output->type == kTfLiteUInt8) ||
- (input->type == kTfLiteUInt8 && output->type == kTfLiteInt8) ||
- (input->type == kTfLiteInt8 && output->type == kTfLiteInt16) ||
- (input->type == kTfLiteInt8 && output->type == kTfLiteInt32) ||
- (input->type == kTfLiteInt16 && output->type == kTfLiteInt16) ||
- (input->type == kTfLiteInt16 && output->type == kTfLiteInt32) ||
- (input->type == kTfLiteInt32 && output->type == kTfLiteInt8) ||
- (input->type == kTfLiteInt32 && output->type == kTfLiteInt16)) {
- double effective_scale = static_cast<double>(input->params.scale) /
- static_cast<double>(output->params.scale);
- QuantizeMultiplier(effective_scale, &data->requantize_output_multiplier,
- &data->requantize_output_shift);
- }
- data->quantization_params.zero_point = output->params.zero_point;
- data->quantization_params.scale = static_cast<double>(output->params.scale);
- data->input_zero_point = input->params.zero_point;
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus EvalQuantizeReference(TfLiteContext* context, TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- auto* data = static_cast<OpDataQuantizeReference*>(node->user_data);
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- if (input->type == kTfLiteFloat32) {
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::AffineQuantize(
- data->quantization_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- case kTfLiteInt16:
- reference_ops::AffineQuantize(
- data->quantization_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output));
- return kTfLiteOk;
- default:
- MicroPrintf("Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (input->type == kTfLiteInt32) {
- size_t size = ElementCount(*input->dims);
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int32_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- case kTfLiteInt16:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int32_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int16_t>(output));
- break;
- default:
- MicroPrintf("Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (input->type == kTfLiteInt16) {
- size_t size = ElementCount(*input->dims);
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int16_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- case kTfLiteInt16:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int16_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int16_t>(output));
- return kTfLiteOk;
- case kTfLiteInt32:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int16_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int32_t>(output));
- return kTfLiteOk;
- default:
- MicroPrintf("Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (input->type == kTfLiteInt8) {
- // Int8 to Int8 requantization, required if the input and output tensors
- // have different scales and/or zero points.
- size_t size = ElementCount(*input->dims);
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int8_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- case kTfLiteUInt8:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int8_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<uint8_t>(output));
- break;
- case kTfLiteInt16:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int8_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int16_t>(output));
- break;
- case kTfLiteInt32:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<int8_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int32_t>(output));
- break;
- default:
- MicroPrintf("Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else if (input->type == kTfLiteUInt8) {
- size_t size = ElementCount(*input->dims);
- switch (output->type) {
- case kTfLiteInt8:
- reference_ops::Requantize(
- tflite::micro::GetTensorData<uint8_t>(input), size,
- data->requantize_output_multiplier, data->requantize_output_shift,
- data->input_zero_point, data->quantization_params.zero_point,
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- default:
- MicroPrintf("Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- } else {
- MicroPrintf("Input %s, output %s not supported.",
- TfLiteTypeGetName(input->type),
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace tflite
|