| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374 |
- /* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/mean.h"
- #include "tensorflow/lite/kernels/internal/reference/reduce.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/reduce.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- const int kMaxNumberOfAxis = 5;
- const int kMaxNumberOfReducedAxis = 2;
- TfLiteStatus PrepareSimple(TfLiteContext* context, TfLiteNode* node,
- int32_t* multiplier, int* shift) {
- MicroContext* micro_context = GetMicroContext(context);
- // Inputs Tensor (dtype depends on quantization):
- // [0] = Input
- // [1] = Axis
- TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0);
- // Outputs Tensor (dtype depends on quantization):
- // [0] = Output
- // Validate number of inputs and outputs
- TF_LITE_ENSURE_EQ(context, node->inputs->size, 2);
- TF_LITE_ENSURE_EQ(context, node->outputs->size, 1);
- // Validate axis type
- TfLiteTensor* axis = micro_context->AllocateTempInputTensor(node, 1);
- TF_LITE_ENSURE(context, axis != nullptr);
- TF_LITE_ENSURE_TYPES_EQ(context, axis->type, kTfLiteInt32);
- if (input->type == kTfLiteInt8) {
- TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
- const double real_multiplier = static_cast<double>(input->params.scale) /
- static_cast<double>(output->params.scale);
- QuantizeMultiplier(real_multiplier, multiplier, shift);
- micro_context->DeallocateTempTfLiteTensor(output);
- }
- micro_context->DeallocateTempTfLiteTensor(axis);
- micro_context->DeallocateTempTfLiteTensor(input);
- return kTfLiteOk;
- }
- TfLiteStatus PrepareMaxHelper(TfLiteContext* context, TfLiteNode* node,
- OpDataReduce* op_data) {
- TF_LITE_ENSURE_OK(context, PrepareSimple(context, node, &op_data->multiplier,
- &op_data->shift));
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0);
- TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
- TfLiteTensor* axis = micro_context->AllocateTempInputTensor(node, 1);
- op_data->input_scale = input->params.scale;
- op_data->output_scale = output->params.scale;
- op_data->num_output_elements = NumElements(output);
- context->RequestScratchBufferInArena(context, sizeof(int) * input->dims->size,
- &op_data->temp_buffer_idx);
- context->RequestScratchBufferInArena(
- context, sizeof(int) * static_cast<int>(ElementCount(*axis->dims)),
- &op_data->resolved_axis_idx);
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(output);
- micro_context->DeallocateTempTfLiteTensor(axis);
- return kTfLiteOk;
- }
- TfLiteStatus PrepareMeanOrSumHelper(TfLiteContext* context, TfLiteNode* node,
- OpDataReduce* op_data) {
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input = micro_context->AllocateTempInputTensor(node, 0);
- TfLiteTensor* output = micro_context->AllocateTempOutputTensor(node, 0);
- if (input->type == kTfLiteInt8 || input->type == kTfLiteInt16) {
- const double real_multiplier = static_cast<double>(input->params.scale) /
- static_cast<double>(output->params.scale);
- QuantizeMultiplier(real_multiplier, &op_data->multiplier, &op_data->shift);
- }
- int output_size = NumElements(output);
- if (input->type == kTfLiteInt8 || input->type == kTfLiteInt16) {
- context->RequestScratchBufferInArena(context, output_size * sizeof(int32_t),
- &op_data->temp_buffer_idx);
- op_data->input_zp = input->params.zero_point;
- op_data->input_scale = input->params.scale;
- op_data->output_zp = output->params.zero_point;
- op_data->output_scale = output->params.scale;
- }
- TF_LITE_ENSURE_OK(
- context,
- PrepareSimple(context, node, &(op_data->multiplier), &(op_data->shift)));
- // TODO(b/144955155): Support uint8_t(b/144955155) and int8_t(b/144955018)
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- void ResolveAxis(const int* axis_data, int axis_count,
- tflite::MeanParams* op_params) {
- int i = 0;
- for (; i < axis_count; ++i) {
- op_params->axis[i] = static_cast<int16_t>(axis_data[i]);
- }
- for (; i < 4; ++i) {
- op_params->axis[i] = 1;
- }
- op_params->axis_count = axis_count;
- }
- TfLiteStatus EvalMeanHelper(TfLiteContext* context, TfLiteNode* node,
- OpDataReduce* op_data) {
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- TfLiteReducerParams* params =
- reinterpret_cast<TfLiteReducerParams*>(node->builtin_data);
- int num_axis = static_cast<int>(ElementCount(*axis->dims));
- int temp_index[kMaxNumberOfAxis];
- int resolved_axis[kMaxNumberOfReducedAxis];
- tflite::MeanParams op_params;
- ResolveAxis(tflite::micro::GetTensorData<int>(axis), num_axis, &op_params);
- // Special case mean implementation exists for 4D mean across axes 1 and 2.
- bool special_case_4d_axes_1_and_2 =
- input->dims->size == 4 && op_params.axis_count == 2 &&
- ((op_params.axis[0] == 1 && op_params.axis[1] == 2) ||
- (op_params.axis[0] == 2 && op_params.axis[1] == 1));
- switch (input->type) {
- case kTfLiteFloat32: {
- // Defer to specialized implementation for 4D Mean across axes 1 & 2.
- if (params->keep_dims && special_case_4d_axes_1_and_2) {
- reference_ops::Mean(op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- } else {
- TF_LITE_ENSURE(
- context,
- reference_ops::Mean(
- tflite::micro::GetTensorData<float>(input), input->dims->data,
- input->dims->size, tflite::micro::GetTensorData<float>(output),
- output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_index, resolved_axis,
- tflite::micro::GetTensorData<float>(output)));
- }
- } break;
- case kTfLiteInt8: {
- // Defer to specialized implementation for 4D Mean across axes 1 & 2.
- if (params->keep_dims && special_case_4d_axes_1_and_2) {
- reference_integer_ops::Mean(
- op_params, op_data->multiplier, op_data->shift,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input), op_data->input_zp,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output), op_data->output_zp);
- } else if (op_data->input_zp == op_data->output_zp &&
- op_data->input_scale == op_data->output_scale) {
- int32_t* temp_buffer = static_cast<int32_t*>(
- context->GetScratchBuffer(context, op_data->temp_buffer_idx));
- TF_LITE_ENSURE(
- context,
- reference_ops::Mean(
- tflite::micro::GetTensorData<int8_t>(input), input->dims->data,
- input->dims->size, tflite::micro::GetTensorData<int8_t>(output),
- output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_index, resolved_axis, temp_buffer));
- } else {
- int32_t* temp_buffer = static_cast<int32_t*>(
- context->GetScratchBuffer(context, op_data->temp_buffer_idx));
- TF_LITE_ENSURE(
- context,
- reference_ops::QuantizedMeanOrSum(
- tflite::micro::GetTensorData<int8_t>(input), op_data->input_zp,
- op_data->input_scale, input->dims->data, input->dims->size,
- tflite::micro::GetTensorData<int8_t>(output),
- op_data->output_zp, op_data->output_scale, output->dims->data,
- output->dims->size, tflite::micro::GetTensorData<int>(axis),
- num_axis, params->keep_dims, temp_index, resolved_axis,
- temp_buffer, false));
- }
- } break;
- case kTfLiteInt16: {
- // Defer to specialized implementation for 4D Mean across axes 1 & 2.
- if (params->keep_dims && special_case_4d_axes_1_and_2) {
- reference_integer_ops::Mean(
- op_params, op_data->multiplier, op_data->shift,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int16_t>(input), op_data->input_zp,
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output), op_data->output_zp);
- } else if (op_data->input_zp == op_data->output_zp &&
- op_data->input_scale == op_data->output_scale) {
- int32_t* temp_buffer = static_cast<int32_t*>(
- context->GetScratchBuffer(context, op_data->temp_buffer_idx));
- TF_LITE_ENSURE(
- context,
- reference_ops::Mean(tflite::micro::GetTensorData<int16_t>(input),
- input->dims->data, input->dims->size,
- tflite::micro::GetTensorData<int16_t>(output),
- output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis),
- num_axis, params->keep_dims, temp_index,
- resolved_axis, temp_buffer));
- } else {
- int32_t* temp_buffer = static_cast<int32_t*>(
- context->GetScratchBuffer(context, op_data->temp_buffer_idx));
- TF_LITE_ENSURE(
- context,
- reference_ops::QuantizedMeanOrSum(
- tflite::micro::GetTensorData<int16_t>(input), op_data->input_zp,
- op_data->input_scale, input->dims->data, input->dims->size,
- tflite::micro::GetTensorData<int16_t>(output),
- op_data->output_zp, op_data->output_scale, output->dims->data,
- output->dims->size, tflite::micro::GetTensorData<int>(axis),
- num_axis, params->keep_dims, temp_index, resolved_axis,
- temp_buffer, false));
- }
- } break;
- default:
- TF_LITE_ENSURE_MSG(context, false,
- "Currently, only float32, int8 or int16 input type "
- "is supported.");
- }
- return kTfLiteOk;
- }
- TfLiteStatus EvalMaxHelper(TfLiteContext* context, TfLiteNode* node,
- OpDataReduce* op_data) {
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- TfLiteReducerParams* params =
- static_cast<TfLiteReducerParams*>(node->builtin_data);
- // Interpret an axis tensor with null dimensions as a scalar
- int num_axis = static_cast<int>(ElementCount(*axis->dims));
- int* temp_buffer = static_cast<int*>(
- context->GetScratchBuffer(context, op_data->temp_buffer_idx));
- int* resolved_axis = static_cast<int*>(
- context->GetScratchBuffer(context, op_data->resolved_axis_idx));
- switch (input->type) {
- case kTfLiteFloat32:
- TF_LITE_ENSURE(
- context,
- reference_ops::ReduceGeneric<float>(
- tflite::micro::GetTensorData<float>(input), input->dims->data,
- input->dims->size, tflite::micro::GetTensorData<float>(output),
- output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_buffer, resolved_axis,
- std::numeric_limits<float>::lowest(),
- [](const float current, const float in) -> float {
- return (in > current) ? in : current;
- }));
- break;
- case kTfLiteInt8:
- TF_LITE_ENSURE_EQ(context, static_cast<double>(op_data->input_scale),
- static_cast<double>(op_data->output_scale));
- TF_LITE_ENSURE_EQ(context, op_data->input_zp, op_data->output_zp);
- TF_LITE_ENSURE(
- context,
- reference_ops::ReduceGeneric<int8_t>(
- tflite::micro::GetTensorData<int8_t>(input), input->dims->data,
- input->dims->size, tflite::micro::GetTensorData<int8_t>(output),
- output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_buffer, resolved_axis,
- std::numeric_limits<int8_t>::lowest(),
- [](const int8_t current, const int8_t in) -> int8_t {
- return (in > current) ? in : current;
- }));
- break;
- default:
- MicroPrintf("Only float32 and int8 types are supported.");
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus EvalSumHelper(TfLiteContext* context, TfLiteNode* node,
- OpDataReduce* op_data) {
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- const TfLiteEvalTensor* axis = tflite::micro::GetEvalInput(context, node, 1);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, output->type);
- TfLiteReducerParams* params =
- static_cast<TfLiteReducerParams*>(node->builtin_data);
- // Interpret an axis tensor with null dimensions as a scalar.
- int num_axis = static_cast<int>(ElementCount(*axis->dims));
- int temp_index[kMaxNumberOfAxis];
- int resolved_axis[kMaxNumberOfReducedAxis];
- switch (input->type) {
- case kTfLiteFloat32: {
- TF_LITE_ENSURE(
- context,
- reference_ops::ReduceGeneric<float>(
- tflite::micro::GetTensorData<float>(input), input->dims->data,
- input->dims->size, tflite::micro::GetTensorData<float>(output),
- output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_index, resolved_axis, /*init_value=*/0.f,
- [](const float current, const float in) -> float {
- return in + current;
- }));
- } break;
- case kTfLiteInt8: {
- int32_t* temp_buffer = static_cast<int32_t*>(
- context->GetScratchBuffer(context, op_data->temp_buffer_idx));
- TF_LITE_ENSURE(
- context,
- reference_ops::QuantizedMeanOrSum(
- tflite::micro::GetTensorData<int8_t>(input), op_data->input_zp,
- op_data->input_scale, input->dims->data, input->dims->size,
- tflite::micro::GetTensorData<int8_t>(output), op_data->output_zp,
- op_data->output_scale, output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_index, resolved_axis, temp_buffer,
- /*compute_sum=*/true));
- } break;
- case kTfLiteInt16: {
- int32_t* temp_buffer = static_cast<int32_t*>(
- context->GetScratchBuffer(context, op_data->temp_buffer_idx));
- TF_LITE_ENSURE(
- context,
- reference_ops::QuantizedMeanOrSum(
- tflite::micro::GetTensorData<int16_t>(input), op_data->input_zp,
- op_data->input_scale, input->dims->data, input->dims->size,
- tflite::micro::GetTensorData<int16_t>(output), op_data->output_zp,
- op_data->output_scale, output->dims->data, output->dims->size,
- tflite::micro::GetTensorData<int>(axis), num_axis,
- params->keep_dims, temp_index, resolved_axis, temp_buffer,
- /*compute_sum=*/true));
- } break;
- default:
- MicroPrintf("Only float32, int8, and int16 types are supported.");
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace tflite
|