| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/slice.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- namespace tflite {
- namespace {
- constexpr int kInputTensor = 0;
- constexpr int kBeginTensor = 1;
- constexpr int kSizeTensor = 2;
- constexpr int kOutputTensor = 0;
- const int kMaxDim = 5;
- template <typename T>
- void GetBeginAndSizeVectors(int dimensions, const TfLiteEvalTensor* begin,
- const TfLiteEvalTensor* size, int32_t* begins,
- int32_t* sizes) {
- int offset = kMaxDim - dimensions;
- for (int idx = 0; idx < dimensions; ++idx) {
- begins[offset + idx] = tflite::micro::GetTensorData<T>(begin)[idx];
- sizes[offset + idx] = tflite::micro::GetTensorData<T>(size)[idx];
- }
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- MicroContext* micro_context = GetMicroContext(context);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- TfLiteTensor* input =
- micro_context->AllocateTempInputTensor(node, kInputTensor);
- TFLITE_DCHECK(input != nullptr);
- TfLiteTensor* begin =
- micro_context->AllocateTempInputTensor(node, kBeginTensor);
- TFLITE_DCHECK(begin != nullptr);
- TfLiteTensor* size =
- micro_context->AllocateTempInputTensor(node, kSizeTensor);
- TFLITE_DCHECK(size != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TFLITE_DCHECK(output != nullptr);
- // Ensure validity of input tensor and its dimension.
- TFLITE_DCHECK(input->type == output->type);
- TFLITE_DCHECK(begin->type == size->type);
- TFLITE_DCHECK(begin->type == kTfLiteInt32 || begin->type == kTfLiteInt64);
- TFLITE_DCHECK(size->type == kTfLiteInt32 || size->type == kTfLiteInt64);
- TFLITE_DCHECK(NumDimensions(begin) == 1);
- TFLITE_DCHECK(NumDimensions(size) == 1);
- TFLITE_DCHECK(NumElements(begin) == NumElements(size));
- TFLITE_DCHECK(NumDimensions(input) <= kMaxDim);
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(begin);
- micro_context->DeallocateTempTfLiteTensor(size);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- const TfLiteEvalTensor* begin =
- tflite::micro::GetEvalInput(context, node, kBeginTensor);
- const TfLiteEvalTensor* size =
- tflite::micro::GetEvalInput(context, node, kSizeTensor);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- tflite::SliceParams op_params;
- op_params.begin_count = kMaxDim;
- op_params.size_count = kMaxDim;
- for (int i = 0; i < kMaxDim; ++i) {
- op_params.begin[i] = 0;
- op_params.size[i] = 1;
- }
- if (begin->type == kTfLiteInt32) {
- GetBeginAndSizeVectors<int32_t>(input->dims->size, begin, size,
- op_params.begin, op_params.size);
- } else if (begin->type == kTfLiteInt64) {
- GetBeginAndSizeVectors<int64_t>(input->dims->size, begin, size,
- op_params.begin, op_params.size);
- } else {
- MicroPrintf("Begin tensor type %s (%d) not supported.",
- TfLiteTypeGetName(input->type), input->type);
- return kTfLiteError;
- }
- switch (input->type) {
- case kTfLiteFloat32:
- reference_ops::Slice<float>(op_params,
- tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- break;
- case kTfLiteInt32:
- reference_ops::Slice<int32_t>(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int32_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int32_t>(output));
- break;
- case kTfLiteInt8:
- reference_ops::Slice<int8_t>(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- break;
- case kTfLiteInt16:
- reference_ops::Slice<int16_t>(
- op_params, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int16_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output));
- break;
- default:
- MicroPrintf("Input tensor type %s (%d) not supported.",
- TfLiteTypeGetName(input->type), input->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_SLICE() {
- return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
- }
- } // namespace tflite
|