| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/kernels/softmax.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/softmax.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- void SoftmaxQuantized(const TfLiteEvalTensor* input, TfLiteEvalTensor* output,
- const SoftmaxParams& op_data) {
- if (input->type == kTfLiteInt8) {
- if (output->type == kTfLiteInt16) {
- tflite::reference_ops::Softmax(
- op_data, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output));
- } else {
- tflite::reference_ops::Softmax(
- op_data, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int8_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- } else {
- tflite::reference_ops::SoftmaxInt16(
- op_data, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<int16_t>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output));
- }
- }
- TfLiteStatus SoftmaxEval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* input = tflite::micro::GetEvalInput(context, node, 0);
- TfLiteEvalTensor* output = tflite::micro::GetEvalOutput(context, node, 0);
- TFLITE_DCHECK(node->user_data != nullptr);
- SoftmaxParams op_data = *static_cast<SoftmaxParams*>(node->user_data);
- switch (input->type) {
- case kTfLiteFloat32: {
- tflite::reference_ops::Softmax(
- op_data, tflite::micro::GetTensorShape(input),
- tflite::micro::GetTensorData<float>(input),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- return kTfLiteOk;
- }
- case kTfLiteInt8:
- case kTfLiteInt16: {
- SoftmaxQuantized(input, output, op_data);
- return kTfLiteOk;
- }
- default:
- MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(input->type),
- input->type);
- return kTfLiteError;
- }
- }
- } // namespace
- TfLiteRegistration Register_SOFTMAX() {
- return tflite::micro::RegisterOp(SoftmaxInit, SoftmaxPrepare, SoftmaxEval);
- }
- } // namespace tflite
|