| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247 |
- /* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/binary_function.h"
- #include "tensorflow/lite/kernels/internal/reference/integer_ops/add.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_context.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- namespace tflite {
- namespace {
- constexpr int kInputTensor1 = 0;
- constexpr int kInputTensor2 = 1;
- constexpr int kOutputTensor = 0;
- struct OpData {
- bool requires_broadcast;
- ArithmeticParams arithmetic_params;
- };
- template <typename T>
- T SquaredDifference(T input1, T input2) {
- const T difference = input1 - input2;
- return difference * difference;
- }
- void* SquaredDifferenceInit(TfLiteContext* context, const char* buffer,
- size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpData));
- }
- TfLiteStatus SquaredDifferencePrepare(TfLiteContext* context,
- TfLiteNode* node) {
- TFLITE_DCHECK(node->user_data != nullptr);
- OpData* data = reinterpret_cast<OpData*>(node->user_data);
- data->requires_broadcast = false;
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input1 =
- micro_context->AllocateTempInputTensor(node, kInputTensor1);
- TF_LITE_ENSURE(context, input1 != nullptr);
- TfLiteTensor* input2 =
- micro_context->AllocateTempInputTensor(node, kInputTensor2);
- TF_LITE_ENSURE(context, input2 != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE_TYPES_EQ(context, input1->type, input2->type);
- output->type = input2->type;
- // Ensure the quantization parameters are equivalent.
- if (input1->type == kTfLiteInt8) {
- const auto& input1_quantization_params = input1->params;
- const auto& input2_quantization_params = input2->params;
- const auto& output_quantization_params = output->params;
- const int32_t integer_type_min = std::numeric_limits<int8_t>::min();
- const int32_t integer_type_max = std::numeric_limits<int8_t>::max();
- TF_LITE_ENSURE(context,
- input1_quantization_params.zero_point >= integer_type_min);
- TF_LITE_ENSURE(context,
- input1_quantization_params.zero_point <= integer_type_max);
- TF_LITE_ENSURE(context,
- input2_quantization_params.zero_point >= integer_type_min);
- TF_LITE_ENSURE(context,
- input2_quantization_params.zero_point <= integer_type_max);
- TF_LITE_ENSURE(context,
- output_quantization_params.zero_point >= integer_type_min);
- TF_LITE_ENSURE(context,
- output_quantization_params.zero_point <= integer_type_max);
- data->arithmetic_params.input1_offset =
- -input1_quantization_params.zero_point;
- data->arithmetic_params.input2_offset =
- -input2_quantization_params.zero_point;
- data->arithmetic_params.output_offset =
- output_quantization_params.zero_point;
- // shift to make integer for scales.
- // 7 is selected so that maximum shifted result 255^2 * (1 << (7 * 2 ))
- // does not overflow signed 32-bit integer
- data->arithmetic_params.left_shift = 7;
- const double twice_max_input_scale =
- 2.0 * static_cast<double>(std::max(input1_quantization_params.scale,
- input2_quantization_params.scale));
- const double real_input1_multiplier =
- static_cast<double>(input1_quantization_params.scale) /
- twice_max_input_scale;
- double real_input2_multiplier =
- static_cast<double>(input2_quantization_params.scale) /
- twice_max_input_scale;
- const double real_output_multiplier =
- (twice_max_input_scale * twice_max_input_scale) /
- static_cast<double>((1 << data->arithmetic_params.left_shift * 2) *
- output_quantization_params.scale);
- QuantizeMultiplierSmallerThanOneExp(
- real_input1_multiplier, &data->arithmetic_params.input1_multiplier,
- &data->arithmetic_params.input1_shift);
- QuantizeMultiplierSmallerThanOneExp(
- real_input2_multiplier, &data->arithmetic_params.input2_multiplier,
- &data->arithmetic_params.input2_shift);
- QuantizeMultiplierSmallerThanOneExp(
- real_output_multiplier, &data->arithmetic_params.output_multiplier,
- &data->arithmetic_params.output_shift);
- data->arithmetic_params.quantized_activation_min =
- std::numeric_limits<int8_t>::min();
- data->arithmetic_params.quantized_activation_max =
- std::numeric_limits<int8_t>::max();
- }
- data->requires_broadcast = !HaveSameShapes(input1, input2);
- micro_context->DeallocateTempTfLiteTensor(input1);
- micro_context->DeallocateTempTfLiteTensor(input2);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- inline int8_t SquaredDifference(int8_t x, int8_t y,
- const ArithmeticParams& params) {
- const int32_t input1_val = params.input1_offset + x;
- const int32_t input2_val = params.input2_offset + y;
- const int32_t shifted_input1_val = input1_val * (1 << params.left_shift);
- const int32_t shifted_input2_val = input2_val * (1 << params.left_shift);
- const int32_t scaled_input1_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input1_val, params.input1_multiplier, params.input1_shift);
- const int32_t scaled_input2_val =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- shifted_input2_val, params.input2_multiplier, params.input2_shift);
- const int32_t raw_diff = scaled_input1_val - scaled_input2_val;
- // Max of this is 255^2 * (1 << 14), so won't overflow 32 bits.
- const int32_t squared_raw_diff = raw_diff * raw_diff;
- const int32_t raw_output =
- MultiplyByQuantizedMultiplierSmallerThanOneExp(
- squared_raw_diff, params.output_multiplier, params.output_shift) +
- params.output_offset;
- const int32_t clamped_output =
- std::min(params.quantized_activation_max,
- std::max(params.quantized_activation_min, raw_output));
- return static_cast<int8_t>(clamped_output);
- }
- template <typename T>
- void EvalQuantizedSquaredDifference(TfLiteContext* context, TfLiteNode* node,
- const OpData* data,
- const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2,
- TfLiteEvalTensor* output) {
- const auto* op_data = static_cast<const OpData*>(node->user_data);
- if (data->requires_broadcast) {
- reference_integer_ops::BroadcastBinaryFunction4DSlow(
- op_data->arithmetic_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<T>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<T>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<T>(output),
- reference_integer_ops::CheckArithmeticParams, SquaredDifference);
- } else {
- const int flat_size = tflite::micro::GetTensorShape(input1).FlatSize();
- reference_integer_ops::ElementWise(
- flat_size, op_data->arithmetic_params,
- tflite::micro::GetTensorData<int8_t>(input1),
- tflite::micro::GetTensorData<int8_t>(input2),
- tflite::micro::GetTensorData<int8_t>(output),
- reference_integer_ops::CheckArithmeticParams, SquaredDifference);
- }
- }
- template <typename T>
- void EvalSquaredDifference(TfLiteContext* context, TfLiteNode* node,
- const OpData* data, const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2,
- TfLiteEvalTensor* output) {
- if (data->requires_broadcast) {
- reference_ops::BroadcastBinaryFunction4DSlow<T, T, T>(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<T>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<T>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<T>(output), SquaredDifference<T>);
- } else {
- reference_ops::BinaryFunction<T, T, T>(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<T>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<T>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<T>(output), SquaredDifference<T>);
- }
- }
- TfLiteStatus SquaredDifferenceEval(TfLiteContext* context, TfLiteNode* node) {
- OpData* data = reinterpret_cast<OpData*>(node->user_data);
- const TfLiteEvalTensor* input1 =
- tflite::micro::GetEvalInput(context, node, kInputTensor1);
- const TfLiteEvalTensor* input2 =
- tflite::micro::GetEvalInput(context, node, kInputTensor2);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- if (output->type == kTfLiteFloat32) {
- EvalSquaredDifference<float>(context, node, data, input1, input2, output);
- } else if (output->type == kTfLiteInt32) {
- EvalSquaredDifference<int32_t>(context, node, data, input1, input2, output);
- } else if (output->type == kTfLiteInt8) {
- EvalQuantizedSquaredDifference<int8_t>(context, node, data, input1, input2,
- output);
- } else {
- MicroPrintf(
- "SquaredDifference only supports FLOAT32, INT32 and INT8 now, got %d.",
- output->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_SQUARED_DIFFERENCE() {
- return tflite::micro::RegisterOp(
- SquaredDifferenceInit, SquaredDifferencePrepare, SquaredDifferenceEval);
- }
- } // namespace tflite
|