| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/kernels/sub.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/reference/add.h"
- #include "tensorflow/lite/kernels/internal/reference/process_broadcast_shapes.h"
- #include "tensorflow/lite/kernels/internal/reference/sub.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_error_reporter.h"
- namespace tflite {
- void* SubInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(OpDataSub));
- }
- void EvalSub(TfLiteContext* context, TfLiteNode* node, TfLiteSubParams* params,
- const OpDataSub* data, const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2, TfLiteEvalTensor* output) {
- float output_activation_min, output_activation_max;
- CalculateActivationRange(params->activation, &output_activation_min,
- &output_activation_max);
- tflite::ArithmeticParams op_params;
- SetActivationParams(output_activation_min, output_activation_max, &op_params);
- if (data->requires_broadcast) {
- tflite::reference_ops::BroadcastSubSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<float>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<float>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- } else {
- tflite::reference_ops::SubWithActivation(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<float>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<float>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<float>(output));
- }
- }
- TfLiteStatus EvalSubQuantized(TfLiteContext* context, TfLiteNode* node,
- TfLiteSubParams* params, const OpDataSub* data,
- const TfLiteEvalTensor* input1,
- const TfLiteEvalTensor* input2,
- TfLiteEvalTensor* output) {
- tflite::ArithmeticParams op_params;
- op_params.left_shift = data->left_shift;
- op_params.input1_offset = data->input1_offset;
- op_params.input1_multiplier = data->input1_multiplier;
- op_params.input1_shift = data->input1_shift;
- op_params.input2_offset = data->input2_offset;
- op_params.input2_multiplier = data->input2_multiplier;
- op_params.input2_shift = data->input2_shift;
- op_params.output_offset = data->output_offset;
- op_params.output_multiplier = data->output_multiplier;
- op_params.output_shift = data->output_shift;
- SetActivationParams(data->output_activation_min, data->output_activation_max,
- &op_params);
- bool need_broadcast = reference_ops::ProcessBroadcastShapes(
- tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorShape(input2), &op_params);
- switch (output->type) {
- case kTfLiteInt8: {
- if (need_broadcast) {
- tflite::reference_ops::BroadcastQuantSubSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- } else {
- tflite::reference_ops::Sub(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int8_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int8_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int8_t>(output));
- }
- break;
- }
- case kTfLiteInt16: {
- if (need_broadcast) {
- tflite::reference_ops::BroadcastQuantSubSlow(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int16_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int16_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output));
- } else {
- tflite::reference_ops::Sub(
- op_params, tflite::micro::GetTensorShape(input1),
- tflite::micro::GetTensorData<int16_t>(input1),
- tflite::micro::GetTensorShape(input2),
- tflite::micro::GetTensorData<int16_t>(input2),
- tflite::micro::GetTensorShape(output),
- tflite::micro::GetTensorData<int16_t>(output));
- }
- break;
- }
- default:
- MicroPrintf("Quantized type %s not currently supported.",
- TfLiteTypeGetName(output->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteStatus SubEval(TfLiteContext* context, TfLiteNode* node) {
- auto* params = reinterpret_cast<TfLiteSubParams*>(node->builtin_data);
- const TfLiteEvalTensor* input1 =
- tflite::micro::GetEvalInput(context, node, kSubInputTensor1);
- const TfLiteEvalTensor* input2 =
- tflite::micro::GetEvalInput(context, node, kSubInputTensor2);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kSubOutputTensor);
- TFLITE_DCHECK(node->user_data != nullptr);
- const OpDataSub& data = *(static_cast<const OpDataSub*>(node->user_data));
- if (output->type == kTfLiteFloat32) {
- EvalSub(context, node, params, &data, input1, input2, output);
- } else if (output->type == kTfLiteInt8 || output->type == kTfLiteInt16) {
- TF_LITE_ENSURE_OK(context, EvalSubQuantized(context, node, params, &data,
- input1, input2, output));
- } else {
- MicroPrintf("Type %s (%d) not supported.", TfLiteTypeGetName(output->type),
- output->type);
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- TfLiteRegistration Register_SUB() {
- return tflite::micro::RegisterOp(SubInit, SubPrepare, SubEval);
- }
- } // namespace tflite
|