| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_
- #define TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_
- #include <cstddef>
- #include <cstdint>
- #include "flatbuffers/flatbuffers.h" // from @flatbuffers
- #include "tensorflow/lite/c/c_api_types.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/core/api/error_reporter.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/micro/micro_allocator.h"
- #include "tensorflow/lite/micro/micro_context.h"
- #include "tensorflow/lite/micro/micro_graph.h"
- #include "tensorflow/lite/micro/micro_op_resolver.h"
- #include "tensorflow/lite/micro/micro_profiler.h"
- #include "tensorflow/lite/portable_type_to_tflitetype.h"
- #include "tensorflow/lite/schema/schema_generated.h"
- /// Copied from tensorflow/lite/version.h to avoid a dependency chain into
- // tensorflow/core.
- #define TFLITE_SCHEMA_VERSION (3)
- namespace tflite {
- class MicroInterpreter {
- public:
- // The lifetime of the model, op resolver, tensor arena, error reporter,
- // resource variables, and profiler must be at least as long as that of the
- // interpreter object, since the interpreter may need to access them at any
- // time. This means that you should usually create them with the same scope as
- // each other, for example having them all allocated on the stack as local
- // variables through a top-level function. The interpreter doesn't do any
- // deallocation of any of the pointed-to objects, ownership remains with the
- // caller.
- MicroInterpreter(const Model* model, const MicroOpResolver& op_resolver,
- uint8_t* tensor_arena, size_t tensor_arena_size,
- ErrorReporter* error_reporter,
- MicroResourceVariables* resource_variables = nullptr,
- MicroProfiler* profiler = nullptr);
- // Create an interpreter instance using an existing MicroAllocator instance.
- // This constructor should be used when creating an allocator that needs to
- // have allocation handled in more than one interpreter or for recording
- // allocations inside the interpreter. The lifetime of the allocator must be
- // as long as that of the interpreter object.
- MicroInterpreter(const Model* model, const MicroOpResolver& op_resolver,
- MicroAllocator* allocator, ErrorReporter* error_reporter,
- MicroResourceVariables* resource_variables = nullptr,
- MicroProfiler* profiler = nullptr);
- ~MicroInterpreter();
- // Runs through the model and allocates all necessary input, output and
- // intermediate tensors.
- TfLiteStatus AllocateTensors();
- // In order to support partial graph runs for strided models, this can return
- // values other than kTfLiteOk and kTfLiteError.
- // TODO(b/149795762): Add this to the TfLiteStatus enum.
- TfLiteStatus Invoke();
- // This is the recommended API for an application to pass an external payload
- // pointer as an external context to kernels. The life time of the payload
- // pointer should be at least as long as this interpreter. TFLM supports only
- // one external context.
- TfLiteStatus SetMicroExternalContext(void* external_context_payload);
- TfLiteTensor* input(size_t index);
- size_t inputs_size() const {
- return model_->subgraphs()->Get(0)->inputs()->size();
- }
- const flatbuffers::Vector<int32_t>& inputs() const {
- return *model_->subgraphs()->Get(0)->inputs();
- }
- TfLiteTensor* input_tensor(size_t index) { return input(index); }
- template <class T>
- T* typed_input_tensor(int tensor_index) {
- if (TfLiteTensor* tensor_ptr = input_tensor(tensor_index)) {
- if (tensor_ptr->type == typeToTfLiteType<T>()) {
- return GetTensorData<T>(tensor_ptr);
- }
- }
- return nullptr;
- }
- TfLiteTensor* output(size_t index);
- size_t outputs_size() const {
- return model_->subgraphs()->Get(0)->outputs()->size();
- }
- const flatbuffers::Vector<int32_t>& outputs() const {
- return *model_->subgraphs()->Get(0)->outputs();
- }
- TfLiteTensor* output_tensor(size_t index) { return output(index); }
- template <class T>
- T* typed_output_tensor(int tensor_index) {
- if (TfLiteTensor* tensor_ptr = output_tensor(tensor_index)) {
- if (tensor_ptr->type == typeToTfLiteType<T>()) {
- return GetTensorData<T>(tensor_ptr);
- }
- }
- return nullptr;
- }
- // Reset the state to be what you would expect when the interpreter is first
- // created. i.e. after Init and Prepare is called for the very first time.
- TfLiteStatus Reset();
- // TODO(b/244457206): remove this in favor of Reset()
- // Reset all variable tensors to the default value.
- TfLiteStatus ResetVariableTensors();
- TfLiteStatus initialization_status() const { return initialization_status_; }
- // Populates node and registration pointers representing the inference graph
- // of the model from values inside the flatbuffer (loaded from the TfLiteModel
- // instance). Persistent data (e.g. operator data) is allocated from the
- // arena.
- TfLiteStatus PrepareNodeAndRegistrationDataFromFlatbuffer();
- // For debugging only.
- // Returns the actual used arena in bytes. This method gives the optimal arena
- // size. It's only available after `AllocateTensors` has been called.
- // Note that normally `tensor_arena` requires 16 bytes alignment to fully
- // utilize the space. If it's not the case, the optimial arena size would be
- // arena_used_bytes() + 16.
- size_t arena_used_bytes() const { return allocator_.used_bytes(); }
- protected:
- const MicroAllocator& allocator() const { return allocator_; }
- const TfLiteContext& context() const { return context_; }
- private:
- // TODO(b/158263161): Consider switching to Create() function to enable better
- // error reporting during initialization.
- void Init(MicroProfiler* profiler);
- // Gets the current subgraph index used from within context methods.
- int get_subgraph_index() { return graph_.GetCurrentSubgraphIndex(); }
- const Model* model_;
- const MicroOpResolver& op_resolver_;
- ErrorReporter* error_reporter_;
- TfLiteContext context_ = {};
- MicroAllocator& allocator_;
- MicroGraph graph_;
- bool tensors_allocated_;
- TfLiteStatus initialization_status_;
- ScratchBufferHandle* scratch_buffer_handles_ = nullptr;
- // TODO(b/162311891): Clean these pointers up when this class supports buffers
- // from TfLiteEvalTensor.
- TfLiteTensor** input_tensors_;
- TfLiteTensor** output_tensors_;
- MicroContext micro_context_;
- };
- } // namespace tflite
- #endif // TENSORFLOW_LITE_MICRO_MICRO_INTERPRETER_H_
|