| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include <numeric>
- #define FLATBUFFERS_LOCALE_INDEPENDENT 0
- #include "flatbuffers/flexbuffers.h"
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- namespace {
- /**
- * This version of detection_postprocess is specific to TFLite Micro. It
- * contains the following differences between the TFLite version:
- *
- * 1.) Temporaries (temporary tensors) - Micro use instead scratch buffer API.
- * 2.) Output dimensions - the TFLite version does not support undefined out
- * dimensions. So model must have static out dimensions.
- */
- // Input tensors
- constexpr int kInputTensorBoxEncodings = 0;
- constexpr int kInputTensorClassPredictions = 1;
- constexpr int kInputTensorAnchors = 2;
- // Output tensors
- constexpr int kOutputTensorDetectionBoxes = 0;
- constexpr int kOutputTensorDetectionClasses = 1;
- constexpr int kOutputTensorDetectionScores = 2;
- constexpr int kOutputTensorNumDetections = 3;
- constexpr int kNumCoordBox = 4;
- constexpr int kBatchSize = 1;
- constexpr int kNumDetectionsPerClass = 100;
- // Object Detection model produces axis-aligned boxes in two formats:
- // BoxCorner represents the lower left corner (xmin, ymin) and
- // the upper right corner (xmax, ymax).
- // CenterSize represents the center (xcenter, ycenter), height and width.
- // BoxCornerEncoding and CenterSizeEncoding are related as follows:
- // ycenter = y / y_scale * anchor.h + anchor.y;
- // xcenter = x / x_scale * anchor.w + anchor.x;
- // half_h = 0.5*exp(h/ h_scale)) * anchor.h;
- // half_w = 0.5*exp(w / w_scale)) * anchor.w;
- // ymin = ycenter - half_h
- // ymax = ycenter + half_h
- // xmin = xcenter - half_w
- // xmax = xcenter + half_w
- struct BoxCornerEncoding {
- float ymin;
- float xmin;
- float ymax;
- float xmax;
- };
- struct CenterSizeEncoding {
- float y;
- float x;
- float h;
- float w;
- };
- // We make sure that the memory allocations are contiguous with static_assert.
- static_assert(sizeof(BoxCornerEncoding) == sizeof(float) * kNumCoordBox,
- "Size of BoxCornerEncoding is 4 float values");
- static_assert(sizeof(CenterSizeEncoding) == sizeof(float) * kNumCoordBox,
- "Size of CenterSizeEncoding is 4 float values");
- struct OpData {
- int max_detections;
- int max_classes_per_detection; // Fast Non-Max-Suppression
- int detections_per_class; // Regular Non-Max-Suppression
- float non_max_suppression_score_threshold;
- float intersection_over_union_threshold;
- int num_classes;
- bool use_regular_non_max_suppression;
- CenterSizeEncoding scale_values;
- // Scratch buffers indexes
- int active_candidate_idx;
- int decoded_boxes_idx;
- int scores_idx;
- int score_buffer_idx;
- int keep_scores_idx;
- int scores_after_regular_non_max_suppression_idx;
- int sorted_values_idx;
- int keep_indices_idx;
- int sorted_indices_idx;
- int buffer_idx;
- int selected_idx;
- // Cached tensor scale and zero point values for quantized operations
- TfLiteQuantizationParams input_box_encodings;
- TfLiteQuantizationParams input_class_predictions;
- TfLiteQuantizationParams input_anchors;
- };
- void* Init(TfLiteContext* context, const char* buffer, size_t length) {
- OpData* op_data = nullptr;
- const uint8_t* buffer_t = reinterpret_cast<const uint8_t*>(buffer);
- const flexbuffers::Map& m = flexbuffers::GetRoot(buffer_t, length).AsMap();
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- op_data = reinterpret_cast<OpData*>(
- context->AllocatePersistentBuffer(context, sizeof(OpData)));
- op_data->max_detections = m["max_detections"].AsInt32();
- op_data->max_classes_per_detection = m["max_classes_per_detection"].AsInt32();
- if (m["detections_per_class"].IsNull())
- op_data->detections_per_class = kNumDetectionsPerClass;
- else
- op_data->detections_per_class = m["detections_per_class"].AsInt32();
- if (m["use_regular_nms"].IsNull())
- op_data->use_regular_non_max_suppression = false;
- else
- op_data->use_regular_non_max_suppression = m["use_regular_nms"].AsBool();
- op_data->non_max_suppression_score_threshold =
- m["nms_score_threshold"].AsFloat();
- op_data->intersection_over_union_threshold = m["nms_iou_threshold"].AsFloat();
- op_data->num_classes = m["num_classes"].AsInt32();
- op_data->scale_values.y = m["y_scale"].AsFloat();
- op_data->scale_values.x = m["x_scale"].AsFloat();
- op_data->scale_values.h = m["h_scale"].AsFloat();
- op_data->scale_values.w = m["w_scale"].AsFloat();
- return op_data;
- }
- void Free(TfLiteContext* context, void* buffer) {}
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- auto* op_data = static_cast<OpData*>(node->user_data);
- // Inputs: box_encodings, scores, anchors
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
- const TfLiteTensor* input_box_encodings =
- GetInput(context, node, kInputTensorBoxEncodings);
- const TfLiteTensor* input_class_predictions =
- GetInput(context, node, kInputTensorClassPredictions);
- const TfLiteTensor* input_anchors =
- GetInput(context, node, kInputTensorAnchors);
- TF_LITE_ENSURE_EQ(context, NumDimensions(input_box_encodings), 3);
- TF_LITE_ENSURE_EQ(context, NumDimensions(input_class_predictions), 3);
- TF_LITE_ENSURE_EQ(context, NumDimensions(input_anchors), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 4);
- const int num_boxes = input_box_encodings->dims->data[1];
- const int num_classes = op_data->num_classes;
- op_data->input_box_encodings.scale = input_box_encodings->params.scale;
- op_data->input_box_encodings.zero_point =
- input_box_encodings->params.zero_point;
- op_data->input_class_predictions.scale =
- input_class_predictions->params.scale;
- op_data->input_class_predictions.zero_point =
- input_class_predictions->params.zero_point;
- op_data->input_anchors.scale = input_anchors->params.scale;
- op_data->input_anchors.zero_point = input_anchors->params.zero_point;
- // Scratch tensors
- context->RequestScratchBufferInArena(context, num_boxes,
- &op_data->active_candidate_idx);
- context->RequestScratchBufferInArena(context,
- num_boxes * kNumCoordBox * sizeof(float),
- &op_data->decoded_boxes_idx);
- context->RequestScratchBufferInArena(
- context,
- input_class_predictions->dims->data[1] *
- input_class_predictions->dims->data[2] * sizeof(float),
- &op_data->scores_idx);
- // Additional buffers
- context->RequestScratchBufferInArena(context, num_boxes * sizeof(float),
- &op_data->score_buffer_idx);
- context->RequestScratchBufferInArena(context, num_boxes * sizeof(float),
- &op_data->keep_scores_idx);
- context->RequestScratchBufferInArena(
- context, op_data->max_detections * num_boxes * sizeof(float),
- &op_data->scores_after_regular_non_max_suppression_idx);
- context->RequestScratchBufferInArena(
- context, op_data->max_detections * num_boxes * sizeof(float),
- &op_data->sorted_values_idx);
- context->RequestScratchBufferInArena(context, num_boxes * sizeof(int),
- &op_data->keep_indices_idx);
- context->RequestScratchBufferInArena(
- context, op_data->max_detections * num_boxes * sizeof(int),
- &op_data->sorted_indices_idx);
- int buffer_size = std::max(num_classes, op_data->max_detections);
- context->RequestScratchBufferInArena(
- context, buffer_size * num_boxes * sizeof(int), &op_data->buffer_idx);
- buffer_size = std::min(num_boxes, op_data->max_detections);
- context->RequestScratchBufferInArena(
- context, buffer_size * num_boxes * sizeof(int), &op_data->selected_idx);
- // Outputs: detection_boxes, detection_scores, detection_classes,
- // num_detections
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 4);
- return kTfLiteOk;
- }
- class Dequantizer {
- public:
- Dequantizer(int zero_point, float scale)
- : zero_point_(zero_point), scale_(scale) {}
- float operator()(uint8_t x) {
- return (static_cast<float>(x) - zero_point_) * scale_;
- }
- private:
- int zero_point_;
- float scale_;
- };
- void DequantizeBoxEncodings(const TfLiteEvalTensor* input_box_encodings,
- int idx, float quant_zero_point, float quant_scale,
- int length_box_encoding,
- CenterSizeEncoding* box_centersize) {
- const uint8_t* boxes =
- tflite::micro::GetTensorData<uint8_t>(input_box_encodings) +
- length_box_encoding * idx;
- Dequantizer dequantize(quant_zero_point, quant_scale);
- // See definition of the KeyPointBoxCoder at
- // https://github.com/tensorflow/models/blob/master/research/object_detection/box_coders/keypoint_box_coder.py
- // The first four elements are the box coordinates, which is the same as the
- // FastRnnBoxCoder at
- // https://github.com/tensorflow/models/blob/master/research/object_detection/box_coders/faster_rcnn_box_coder.py
- box_centersize->y = dequantize(boxes[0]);
- box_centersize->x = dequantize(boxes[1]);
- box_centersize->h = dequantize(boxes[2]);
- box_centersize->w = dequantize(boxes[3]);
- }
- template <class T>
- T ReInterpretTensor(const TfLiteEvalTensor* tensor) {
- const float* tensor_base = tflite::micro::GetTensorData<float>(tensor);
- return reinterpret_cast<T>(tensor_base);
- }
- template <class T>
- T ReInterpretTensor(TfLiteEvalTensor* tensor) {
- float* tensor_base = tflite::micro::GetTensorData<float>(tensor);
- return reinterpret_cast<T>(tensor_base);
- }
- TfLiteStatus DecodeCenterSizeBoxes(TfLiteContext* context, TfLiteNode* node,
- OpData* op_data) {
- // Parse input tensor boxencodings
- const TfLiteEvalTensor* input_box_encodings =
- tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
- TF_LITE_ENSURE_EQ(context, input_box_encodings->dims->data[0], kBatchSize);
- const int num_boxes = input_box_encodings->dims->data[1];
- TF_LITE_ENSURE(context, input_box_encodings->dims->data[2] >= kNumCoordBox);
- const TfLiteEvalTensor* input_anchors =
- tflite::micro::GetEvalInput(context, node, kInputTensorAnchors);
- // Decode the boxes to get (ymin, xmin, ymax, xmax) based on the anchors
- CenterSizeEncoding box_centersize;
- CenterSizeEncoding scale_values = op_data->scale_values;
- CenterSizeEncoding anchor;
- for (int idx = 0; idx < num_boxes; ++idx) {
- switch (input_box_encodings->type) {
- // Quantized
- case kTfLiteUInt8:
- DequantizeBoxEncodings(
- input_box_encodings, idx,
- static_cast<float>(op_data->input_box_encodings.zero_point),
- static_cast<float>(op_data->input_box_encodings.scale),
- input_box_encodings->dims->data[2], &box_centersize);
- DequantizeBoxEncodings(
- input_anchors, idx,
- static_cast<float>(op_data->input_anchors.zero_point),
- static_cast<float>(op_data->input_anchors.scale), kNumCoordBox,
- &anchor);
- break;
- // Float
- case kTfLiteFloat32: {
- // Please see DequantizeBoxEncodings function for the support detail.
- const int box_encoding_idx = idx * input_box_encodings->dims->data[2];
- const float* boxes = &(tflite::micro::GetTensorData<float>(
- input_box_encodings)[box_encoding_idx]);
- box_centersize = *reinterpret_cast<const CenterSizeEncoding*>(boxes);
- anchor =
- ReInterpretTensor<const CenterSizeEncoding*>(input_anchors)[idx];
- break;
- }
- default:
- // Unsupported type.
- return kTfLiteError;
- }
- float ycenter = static_cast<float>(static_cast<double>(box_centersize.y) /
- static_cast<double>(scale_values.y) *
- static_cast<double>(anchor.h) +
- static_cast<double>(anchor.y));
- float xcenter = static_cast<float>(static_cast<double>(box_centersize.x) /
- static_cast<double>(scale_values.x) *
- static_cast<double>(anchor.w) +
- static_cast<double>(anchor.x));
- float half_h =
- static_cast<float>(0.5 *
- (std::exp(static_cast<double>(box_centersize.h) /
- static_cast<double>(scale_values.h))) *
- static_cast<double>(anchor.h));
- float half_w =
- static_cast<float>(0.5 *
- (std::exp(static_cast<double>(box_centersize.w) /
- static_cast<double>(scale_values.w))) *
- static_cast<double>(anchor.w));
- float* decoded_boxes = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
- auto& box = reinterpret_cast<BoxCornerEncoding*>(decoded_boxes)[idx];
- box.ymin = ycenter - half_h;
- box.xmin = xcenter - half_w;
- box.ymax = ycenter + half_h;
- box.xmax = xcenter + half_w;
- }
- return kTfLiteOk;
- }
- void DecreasingPartialArgSort(const float* values, int num_values,
- int num_to_sort, int* indices) {
- std::iota(indices, indices + num_values, 0);
- std::partial_sort(
- indices, indices + num_to_sort, indices + num_values,
- [&values](const int i, const int j) { return values[i] > values[j]; });
- }
- int SelectDetectionsAboveScoreThreshold(const float* values, int size,
- const float threshold,
- float* keep_values, int* keep_indices) {
- int counter = 0;
- for (int i = 0; i < size; i++) {
- if (values[i] >= threshold) {
- keep_values[counter] = values[i];
- keep_indices[counter] = i;
- counter++;
- }
- }
- return counter;
- }
- bool ValidateBoxes(const float* decoded_boxes, const int num_boxes) {
- for (int i = 0; i < num_boxes; ++i) {
- // ymax>=ymin, xmax>=xmin
- auto& box = reinterpret_cast<const BoxCornerEncoding*>(decoded_boxes)[i];
- if (box.ymin >= box.ymax || box.xmin >= box.xmax) {
- return false;
- }
- }
- return true;
- }
- float ComputeIntersectionOverUnion(const float* decoded_boxes, const int i,
- const int j) {
- auto& box_i = reinterpret_cast<const BoxCornerEncoding*>(decoded_boxes)[i];
- auto& box_j = reinterpret_cast<const BoxCornerEncoding*>(decoded_boxes)[j];
- const float area_i = (box_i.ymax - box_i.ymin) * (box_i.xmax - box_i.xmin);
- const float area_j = (box_j.ymax - box_j.ymin) * (box_j.xmax - box_j.xmin);
- if (area_i <= 0 || area_j <= 0) return 0.0;
- const float intersection_ymin = std::max<float>(box_i.ymin, box_j.ymin);
- const float intersection_xmin = std::max<float>(box_i.xmin, box_j.xmin);
- const float intersection_ymax = std::min<float>(box_i.ymax, box_j.ymax);
- const float intersection_xmax = std::min<float>(box_i.xmax, box_j.xmax);
- const float intersection_area =
- std::max<float>(intersection_ymax - intersection_ymin, 0.0) *
- std::max<float>(intersection_xmax - intersection_xmin, 0.0);
- return intersection_area / (area_i + area_j - intersection_area);
- }
- // NonMaxSuppressionSingleClass() prunes out the box locations with high overlap
- // before selecting the highest scoring boxes (max_detections in number)
- // It assumes all boxes are good in beginning and sorts based on the scores.
- // If lower-scoring box has too much overlap with a higher-scoring box,
- // we get rid of the lower-scoring box.
- // Complexity is O(N^2) pairwise comparison between boxes
- TfLiteStatus NonMaxSuppressionSingleClassHelper(
- TfLiteContext* context, TfLiteNode* node, OpData* op_data,
- const float* scores, int* selected, int* selected_size,
- int max_detections) {
- const TfLiteEvalTensor* input_box_encodings =
- tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
- const int num_boxes = input_box_encodings->dims->data[1];
- const float non_max_suppression_score_threshold =
- op_data->non_max_suppression_score_threshold;
- const float intersection_over_union_threshold =
- op_data->intersection_over_union_threshold;
- // Maximum detections should be positive.
- TF_LITE_ENSURE(context, (max_detections >= 0));
- // intersection_over_union_threshold should be positive
- // and should be less than 1.
- TF_LITE_ENSURE(context, (intersection_over_union_threshold > 0.0f) &&
- (intersection_over_union_threshold <= 1.0f));
- // Validate boxes
- float* decoded_boxes = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
- TF_LITE_ENSURE(context, ValidateBoxes(decoded_boxes, num_boxes));
- // threshold scores
- int* keep_indices = reinterpret_cast<int*>(
- context->GetScratchBuffer(context, op_data->keep_indices_idx));
- float* keep_scores = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->keep_scores_idx));
- int num_scores_kept = SelectDetectionsAboveScoreThreshold(
- scores, num_boxes, non_max_suppression_score_threshold, keep_scores,
- keep_indices);
- int* sorted_indices = reinterpret_cast<int*>(
- context->GetScratchBuffer(context, op_data->sorted_indices_idx));
- DecreasingPartialArgSort(keep_scores, num_scores_kept, num_scores_kept,
- sorted_indices);
- const int num_boxes_kept = num_scores_kept;
- const int output_size = std::min(num_boxes_kept, max_detections);
- *selected_size = 0;
- int num_active_candidate = num_boxes_kept;
- uint8_t* active_box_candidate = reinterpret_cast<uint8_t*>(
- context->GetScratchBuffer(context, op_data->active_candidate_idx));
- for (int row = 0; row < num_boxes_kept; row++) {
- active_box_candidate[row] = 1;
- }
- for (int i = 0; i < num_boxes_kept; ++i) {
- if (num_active_candidate == 0 || *selected_size >= output_size) break;
- if (active_box_candidate[i] == 1) {
- selected[(*selected_size)++] = keep_indices[sorted_indices[i]];
- active_box_candidate[i] = 0;
- num_active_candidate--;
- } else {
- continue;
- }
- for (int j = i + 1; j < num_boxes_kept; ++j) {
- if (active_box_candidate[j] == 1) {
- float intersection_over_union = ComputeIntersectionOverUnion(
- decoded_boxes, keep_indices[sorted_indices[i]],
- keep_indices[sorted_indices[j]]);
- if (intersection_over_union > intersection_over_union_threshold) {
- active_box_candidate[j] = 0;
- num_active_candidate--;
- }
- }
- }
- }
- return kTfLiteOk;
- }
- // This function implements a regular version of Non Maximal Suppression (NMS)
- // for multiple classes where
- // 1) we do NMS separately for each class across all anchors and
- // 2) keep only the highest anchor scores across all classes
- // 3) The worst runtime of the regular NMS is O(K*N^2)
- // where N is the number of anchors and K the number of
- // classes.
- TfLiteStatus NonMaxSuppressionMultiClassRegularHelper(TfLiteContext* context,
- TfLiteNode* node,
- OpData* op_data,
- const float* scores) {
- const TfLiteEvalTensor* input_box_encodings =
- tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
- const TfLiteEvalTensor* input_class_predictions =
- tflite::micro::GetEvalInput(context, node, kInputTensorClassPredictions);
- TfLiteEvalTensor* detection_boxes =
- tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionBoxes);
- TfLiteEvalTensor* detection_classes = tflite::micro::GetEvalOutput(
- context, node, kOutputTensorDetectionClasses);
- TfLiteEvalTensor* detection_scores =
- tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionScores);
- TfLiteEvalTensor* num_detections =
- tflite::micro::GetEvalOutput(context, node, kOutputTensorNumDetections);
- const int num_boxes = input_box_encodings->dims->data[1];
- const int num_classes = op_data->num_classes;
- const int num_detections_per_class = op_data->detections_per_class;
- const int max_detections = op_data->max_detections;
- const int num_classes_with_background =
- input_class_predictions->dims->data[2];
- // The row index offset is 1 if background class is included and 0 otherwise.
- int label_offset = num_classes_with_background - num_classes;
- TF_LITE_ENSURE(context, num_detections_per_class > 0);
- // For each class, perform non-max suppression.
- float* class_scores = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->score_buffer_idx));
- int* box_indices_after_regular_non_max_suppression = reinterpret_cast<int*>(
- context->GetScratchBuffer(context, op_data->buffer_idx));
- float* scores_after_regular_non_max_suppression =
- reinterpret_cast<float*>(context->GetScratchBuffer(
- context, op_data->scores_after_regular_non_max_suppression_idx));
- int size_of_sorted_indices = 0;
- int* sorted_indices = reinterpret_cast<int*>(
- context->GetScratchBuffer(context, op_data->sorted_indices_idx));
- float* sorted_values = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->sorted_values_idx));
- for (int col = 0; col < num_classes; col++) {
- for (int row = 0; row < num_boxes; row++) {
- // Get scores of boxes corresponding to all anchors for single class
- class_scores[row] =
- *(scores + row * num_classes_with_background + col + label_offset);
- }
- // Perform non-maximal suppression on single class
- int selected_size = 0;
- int* selected = reinterpret_cast<int*>(
- context->GetScratchBuffer(context, op_data->selected_idx));
- TF_LITE_ENSURE_STATUS(NonMaxSuppressionSingleClassHelper(
- context, node, op_data, class_scores, selected, &selected_size,
- num_detections_per_class));
- // Add selected indices from non-max suppression of boxes in this class
- int output_index = size_of_sorted_indices;
- for (int i = 0; i < selected_size; i++) {
- int selected_index = selected[i];
- box_indices_after_regular_non_max_suppression[output_index] =
- (selected_index * num_classes_with_background + col + label_offset);
- scores_after_regular_non_max_suppression[output_index] =
- class_scores[selected_index];
- output_index++;
- }
- // Sort the max scores among the selected indices
- // Get the indices for top scores
- int num_indices_to_sort = std::min(output_index, max_detections);
- DecreasingPartialArgSort(scores_after_regular_non_max_suppression,
- output_index, num_indices_to_sort, sorted_indices);
- // Copy values to temporary vectors
- for (int row = 0; row < num_indices_to_sort; row++) {
- int temp = sorted_indices[row];
- sorted_indices[row] = box_indices_after_regular_non_max_suppression[temp];
- sorted_values[row] = scores_after_regular_non_max_suppression[temp];
- }
- // Copy scores and indices from temporary vectors
- for (int row = 0; row < num_indices_to_sort; row++) {
- box_indices_after_regular_non_max_suppression[row] = sorted_indices[row];
- scores_after_regular_non_max_suppression[row] = sorted_values[row];
- }
- size_of_sorted_indices = num_indices_to_sort;
- }
- // Allocate output tensors
- for (int output_box_index = 0; output_box_index < max_detections;
- output_box_index++) {
- if (output_box_index < size_of_sorted_indices) {
- const int anchor_index = floor(
- box_indices_after_regular_non_max_suppression[output_box_index] /
- num_classes_with_background);
- const int class_index =
- box_indices_after_regular_non_max_suppression[output_box_index] -
- anchor_index * num_classes_with_background - label_offset;
- const float selected_score =
- scores_after_regular_non_max_suppression[output_box_index];
- // detection_boxes
- float* decoded_boxes = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
- ReInterpretTensor<BoxCornerEncoding*>(detection_boxes)[output_box_index] =
- reinterpret_cast<BoxCornerEncoding*>(decoded_boxes)[anchor_index];
- // detection_classes
- tflite::micro::GetTensorData<float>(detection_classes)[output_box_index] =
- class_index;
- // detection_scores
- tflite::micro::GetTensorData<float>(detection_scores)[output_box_index] =
- selected_score;
- } else {
- ReInterpretTensor<BoxCornerEncoding*>(
- detection_boxes)[output_box_index] = {0.0f, 0.0f, 0.0f, 0.0f};
- // detection_classes
- tflite::micro::GetTensorData<float>(detection_classes)[output_box_index] =
- 0.0f;
- // detection_scores
- tflite::micro::GetTensorData<float>(detection_scores)[output_box_index] =
- 0.0f;
- }
- }
- tflite::micro::GetTensorData<float>(num_detections)[0] =
- size_of_sorted_indices;
- return kTfLiteOk;
- }
- // This function implements a fast version of Non Maximal Suppression for
- // multiple classes where
- // 1) we keep the top-k scores for each anchor and
- // 2) during NMS, each anchor only uses the highest class score for sorting.
- // 3) Compared to standard NMS, the worst runtime of this version is O(N^2)
- // instead of O(KN^2) where N is the number of anchors and K the number of
- // classes.
- TfLiteStatus NonMaxSuppressionMultiClassFastHelper(TfLiteContext* context,
- TfLiteNode* node,
- OpData* op_data,
- const float* scores) {
- const TfLiteEvalTensor* input_box_encodings =
- tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
- const TfLiteEvalTensor* input_class_predictions =
- tflite::micro::GetEvalInput(context, node, kInputTensorClassPredictions);
- TfLiteEvalTensor* detection_boxes =
- tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionBoxes);
- TfLiteEvalTensor* detection_classes = tflite::micro::GetEvalOutput(
- context, node, kOutputTensorDetectionClasses);
- TfLiteEvalTensor* detection_scores =
- tflite::micro::GetEvalOutput(context, node, kOutputTensorDetectionScores);
- TfLiteEvalTensor* num_detections =
- tflite::micro::GetEvalOutput(context, node, kOutputTensorNumDetections);
- const int num_boxes = input_box_encodings->dims->data[1];
- const int num_classes = op_data->num_classes;
- const int max_categories_per_anchor = op_data->max_classes_per_detection;
- const int num_classes_with_background =
- input_class_predictions->dims->data[2];
- // The row index offset is 1 if background class is included and 0 otherwise.
- int label_offset = num_classes_with_background - num_classes;
- TF_LITE_ENSURE(context, (max_categories_per_anchor > 0));
- const int num_categories_per_anchor =
- std::min(max_categories_per_anchor, num_classes);
- float* max_scores = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->score_buffer_idx));
- int* sorted_class_indices = reinterpret_cast<int*>(
- context->GetScratchBuffer(context, op_data->buffer_idx));
- for (int row = 0; row < num_boxes; row++) {
- const float* box_scores =
- scores + row * num_classes_with_background + label_offset;
- int* class_indices = sorted_class_indices + row * num_classes;
- DecreasingPartialArgSort(box_scores, num_classes, num_categories_per_anchor,
- class_indices);
- max_scores[row] = box_scores[class_indices[0]];
- }
- // Perform non-maximal suppression on max scores
- int selected_size = 0;
- int* selected = reinterpret_cast<int*>(
- context->GetScratchBuffer(context, op_data->selected_idx));
- TF_LITE_ENSURE_STATUS(NonMaxSuppressionSingleClassHelper(
- context, node, op_data, max_scores, selected, &selected_size,
- op_data->max_detections));
- // Allocate output tensors
- int output_box_index = 0;
- for (int i = 0; i < selected_size; i++) {
- int selected_index = selected[i];
- const float* box_scores =
- scores + selected_index * num_classes_with_background + label_offset;
- const int* class_indices =
- sorted_class_indices + selected_index * num_classes;
- for (int col = 0; col < num_categories_per_anchor; ++col) {
- int box_offset = num_categories_per_anchor * output_box_index + col;
- // detection_boxes
- float* decoded_boxes = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->decoded_boxes_idx));
- ReInterpretTensor<BoxCornerEncoding*>(detection_boxes)[box_offset] =
- reinterpret_cast<BoxCornerEncoding*>(decoded_boxes)[selected_index];
- // detection_classes
- tflite::micro::GetTensorData<float>(detection_classes)[box_offset] =
- class_indices[col];
- // detection_scores
- tflite::micro::GetTensorData<float>(detection_scores)[box_offset] =
- box_scores[class_indices[col]];
- output_box_index++;
- }
- }
- tflite::micro::GetTensorData<float>(num_detections)[0] = output_box_index;
- return kTfLiteOk;
- }
- void DequantizeClassPredictions(const TfLiteEvalTensor* input_class_predictions,
- const int num_boxes,
- const int num_classes_with_background,
- float* scores, OpData* op_data) {
- float quant_zero_point =
- static_cast<float>(op_data->input_class_predictions.zero_point);
- float quant_scale =
- static_cast<float>(op_data->input_class_predictions.scale);
- Dequantizer dequantize(quant_zero_point, quant_scale);
- const uint8_t* scores_quant =
- tflite::micro::GetTensorData<uint8_t>(input_class_predictions);
- for (int idx = 0; idx < num_boxes * num_classes_with_background; ++idx) {
- scores[idx] = dequantize(scores_quant[idx]);
- }
- }
- TfLiteStatus NonMaxSuppressionMultiClass(TfLiteContext* context,
- TfLiteNode* node, OpData* op_data) {
- // Get the input tensors
- const TfLiteEvalTensor* input_box_encodings =
- tflite::micro::GetEvalInput(context, node, kInputTensorBoxEncodings);
- const TfLiteEvalTensor* input_class_predictions =
- tflite::micro::GetEvalInput(context, node, kInputTensorClassPredictions);
- const int num_boxes = input_box_encodings->dims->data[1];
- const int num_classes = op_data->num_classes;
- TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[0],
- kBatchSize);
- TF_LITE_ENSURE_EQ(context, input_class_predictions->dims->data[1], num_boxes);
- const int num_classes_with_background =
- input_class_predictions->dims->data[2];
- TF_LITE_ENSURE(context, (num_classes_with_background - num_classes <= 1));
- TF_LITE_ENSURE(context, (num_classes_with_background >= num_classes));
- const float* scores;
- switch (input_class_predictions->type) {
- case kTfLiteUInt8: {
- float* temporary_scores = reinterpret_cast<float*>(
- context->GetScratchBuffer(context, op_data->scores_idx));
- DequantizeClassPredictions(input_class_predictions, num_boxes,
- num_classes_with_background, temporary_scores,
- op_data);
- scores = temporary_scores;
- } break;
- case kTfLiteFloat32:
- scores = tflite::micro::GetTensorData<float>(input_class_predictions);
- break;
- default:
- // Unsupported type.
- return kTfLiteError;
- }
- if (op_data->use_regular_non_max_suppression) {
- TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClassRegularHelper(
- context, node, op_data, scores));
- } else {
- TF_LITE_ENSURE_STATUS(
- NonMaxSuppressionMultiClassFastHelper(context, node, op_data, scores));
- }
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE(context, (kBatchSize == 1));
- auto* op_data = static_cast<OpData*>(node->user_data);
- // These two functions correspond to two blocks in the Object Detection model.
- // In future, we would like to break the custom op in two blocks, which is
- // currently not feasible because we would like to input quantized inputs
- // and do all calculations in float. Mixed quantized/float calculations are
- // currently not supported in TFLite.
- // This fills in temporary decoded_boxes
- // by transforming input_box_encodings and input_anchors from
- // CenterSizeEncodings to BoxCornerEncoding
- TF_LITE_ENSURE_STATUS(DecodeCenterSizeBoxes(context, node, op_data));
- // This fills in the output tensors
- // by choosing effective set of decoded boxes
- // based on Non Maximal Suppression, i.e. selecting
- // highest scoring non-overlapping boxes.
- TF_LITE_ENSURE_STATUS(NonMaxSuppressionMultiClass(context, node, op_data));
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration* Register_DETECTION_POSTPROCESS() {
- static TfLiteRegistration r = {/*init=*/Init,
- /*free=*/Free,
- /*prepare=*/Prepare,
- /*invoke=*/Eval,
- /*profiling_string=*/nullptr,
- /*builtin_code=*/0,
- /*custom_name=*/nullptr,
- /*version=*/0};
- return &r;
- }
- } // namespace tflite
|