| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/quantization_util.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/kernels/op_macros.h"
- #include "tensorflow/lite/micro/kernels/softmax.h"
- namespace tflite {
- namespace {
- // Softmax parameter data that persists in user_data
- const int kInt16LUTArraySize = 513;
- TfLiteStatus CalculateSoftmaxParams(TfLiteContext* context,
- const TfLiteTensor* input,
- TfLiteTensor* output,
- const TfLiteSoftmaxParams* params,
- SoftmaxParams* op_data) {
- if (input->type == kTfLiteInt8 || input->type == kTfLiteInt16) {
- if (input->type == kTfLiteInt16) {
- TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
- TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 32768,
- (0.001f * 1.f / 32768));
- } else { // input->type == kTfLiteInt8
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteInt8);
- if (output->type == kTfLiteInt16) {
- TF_LITE_ENSURE_EQ(context, output->params.zero_point, -32768);
- TF_LITE_ENSURE_NEAR(context, output->params.scale, 1.f / 65536,
- (0.001f * 1.f / 65536));
- } else { // output->type == kTfLiteint8
- TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteInt8);
- TF_LITE_ENSURE_EQ(context, output->params.zero_point, -128);
- TF_LITE_ENSURE(context, output->params.scale == 1.f / 256);
- }
- }
- static const int kScaledDiffIntegerBits = 5;
- // Calculate input_multiplier and input_left_shift
- if (input->type == kTfLiteInt16) {
- int input_left_shift;
- double input_scale_beta_rescale =
- static_cast<double>(input->params.scale) *
- static_cast<double>(params->beta) /
- (10.0 / 65535.0); // scale the input_diff such that [-65535, 0]
- // correspond to [-10.0, 0.0]
- QuantizeMultiplier(input_scale_beta_rescale, &op_data->input_multiplier,
- &input_left_shift);
- op_data->input_left_shift = input_left_shift;
- } else {
- int input_left_shift;
- tflite::PreprocessSoftmaxScaling(
- static_cast<double>(params->beta),
- static_cast<double>(input->params.scale), kScaledDiffIntegerBits,
- &op_data->input_multiplier, &input_left_shift);
- op_data->input_left_shift = input_left_shift;
- op_data->diff_min =
- -1.0 * tflite::CalculateInputRadius(kScaledDiffIntegerBits,
- op_data->input_left_shift);
- }
- } else {
- TF_LITE_ENSURE_TYPES_EQ(context, input->type, kTfLiteFloat32);
- TF_LITE_ENSURE_TYPES_EQ(context, output->type, kTfLiteFloat32);
- op_data->beta = static_cast<double>(params->beta);
- }
- return kTfLiteOk;
- }
- } // namespace
- void* SoftmaxInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- return context->AllocatePersistentBuffer(context, sizeof(SoftmaxParams));
- }
- TfLiteStatus SoftmaxPrepare(TfLiteContext* context, TfLiteNode* node) {
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 1);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const TfLiteTensor* input = GetInput(context, node, 0);
- TF_LITE_ENSURE(context, input != nullptr);
- TF_LITE_ENSURE(context, NumDimensions(input) >= 1);
- TfLiteTensor* output = GetOutput(context, node, 0);
- TF_LITE_ENSURE(context, output != nullptr);
- TF_LITE_ENSURE(context, node->user_data != nullptr);
- SoftmaxParams* op_data = static_cast<SoftmaxParams*>(node->user_data);
- // Only allocate LUTs for KTfLiteInt16 data type
- if (input->type == kTfLiteInt16) {
- void* raw_exp_lut = context->AllocatePersistentBuffer(
- context, sizeof(int16_t) * kInt16LUTArraySize);
- TF_LITE_ENSURE(context, raw_exp_lut != nullptr);
- op_data->exp_lut = reinterpret_cast<int16_t*>(raw_exp_lut);
- void* one_over_one_plus_x_lut = context->AllocatePersistentBuffer(
- context, sizeof(int16_t) * kInt16LUTArraySize);
- TF_LITE_ENSURE(context, one_over_one_plus_x_lut != nullptr);
- op_data->one_over_one_plus_x_lut =
- reinterpret_cast<int16_t*>(one_over_one_plus_x_lut);
- }
- if (output->type == kTfLiteInt16) {
- TF_LITE_ENSURE(context,
- input->type == kTfLiteInt8 || input->type == kTfLiteInt16);
- } else {
- TF_LITE_ENSURE_EQ(context, input->type, output->type);
- }
- // Populate LUT if required
- if (input->type == kTfLiteInt16) {
- TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
- // exp LUT only used on negative values
- // we consider exp(-10.0) is insignificant to accumulation
- gen_lut([](float value) { return std::exp(value); }, -10.0f, 0.0f,
- op_data->exp_lut, kInt16LUTArraySize);
- gen_lut([](float value) { return 1.0f / (1.0f + value); }, 0.0f, 1.0f,
- op_data->one_over_one_plus_x_lut, kInt16LUTArraySize);
- op_data->zero_point = output->params.zero_point;
- op_data->scale = output->params.scale;
- }
- auto* params = static_cast<TfLiteSoftmaxParams*>(node->builtin_data);
- return CalculateSoftmaxParams(context, input, output, params, op_data);
- }
- } // namespace tflite
|