ClassFlowCNNGeneral.cpp 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939
  1. #include "ClassFlowCNNGeneral.h"
  2. #include <math.h>
  3. #include <iomanip>
  4. #include <sys/types.h>
  5. #include <sstream> // std::stringstream
  6. #include "CTfLiteClass.h"
  7. #include "ClassLogFile.h"
  8. static const char* TAG = "flow_analog";
  9. bool debugdetailgeneral = true;
  10. ClassFlowCNNGeneral::ClassFlowCNNGeneral(ClassFlowAlignment *_flowalign, t_CNNType _cnntype) : ClassFlowImage(NULL, TAG)
  11. {
  12. string cnnmodelfile = "";
  13. modelxsize = 1;
  14. modelysize = 1;
  15. CNNGoodThreshold = 0.0;
  16. ListFlowControll = NULL;
  17. previousElement = NULL;
  18. SaveAllFiles = false;
  19. disabled = false;
  20. isLogImageSelect = false;
  21. CNNType = AutoDetect;
  22. CNNType = _cnntype;
  23. flowpostalignment = _flowalign;
  24. }
  25. string ClassFlowCNNGeneral::getReadout(int _analog = 0, bool _extendedResolution, int prev)
  26. {
  27. string result = "";
  28. if (GENERAL[_analog]->ROI.size() == 0)
  29. return result;
  30. if (CNNType == Analogue)
  31. {
  32. float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
  33. int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
  34. prev = ZeigerEval(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
  35. result = std::to_string(prev);
  36. if (_extendedResolution && (CNNType != Digital))
  37. result = result + std::to_string(ergebnis_nachkomma);
  38. for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
  39. {
  40. prev = ZeigerEval(GENERAL[_analog]->ROI[i]->result_float, prev);
  41. result = std::to_string(prev) + result;
  42. }
  43. return result;
  44. }
  45. if (CNNType == Digital)
  46. {
  47. for (int i = 0; i < GENERAL[_analog]->ROI.size(); ++i)
  48. {
  49. if (GENERAL[_analog]->ROI[i]->result_klasse >= 10)
  50. result = result + "N";
  51. else
  52. result = result + std::to_string(GENERAL[_analog]->ROI[i]->result_klasse);
  53. }
  54. return result;
  55. }
  56. if ((CNNType == DoubleHyprid10) || (CNNType == Digital100))
  57. {
  58. float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
  59. if (zahl >= 0) // NaN?
  60. {
  61. if (_extendedResolution) // ist nur gesetzt, falls es die erste Ziffer ist (kein Analog vorher!)
  62. {
  63. int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
  64. int ergebnis_vorkomma = ((int) floor(zahl)) % 10;
  65. result = std::to_string(ergebnis_vorkomma) + std::to_string(ergebnis_nachkomma);
  66. prev = ergebnis_vorkomma;
  67. }
  68. else
  69. {
  70. prev = ZeigerEval(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev);
  71. // prev = ZeigerEvalHybrid(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, prev, prev);
  72. result = std::to_string(prev);
  73. }
  74. }
  75. else
  76. {
  77. result = "N";
  78. if (_extendedResolution && (CNNType != Digital))
  79. result = "NN";
  80. }
  81. for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
  82. {
  83. if (GENERAL[_analog]->ROI[i]->result_float >= 0)
  84. {
  85. prev = ZeigerEvalHybrid(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, prev);
  86. result = std::to_string(prev) + result;
  87. }
  88. else
  89. {
  90. prev = -1;
  91. result = "N" + result;
  92. }
  93. }
  94. return result;
  95. }
  96. /*
  97. if (CNNType == Digital100)
  98. {
  99. int zif_akt = -1;
  100. float zahl = GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float;
  101. if (zahl >= 0) // NaN?
  102. {
  103. if (_extendedResolution)
  104. {
  105. int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
  106. int ergebnis_vorkomma = ((int) floor(zahl)) % 10;
  107. result = std::to_string(ergebnis_vorkomma) + std::to_string(ergebnis_nachkomma);
  108. zif_akt = ergebnis_vorkomma;
  109. }
  110. else
  111. {
  112. zif_akt = ZeigerEvalHybrid(GENERAL[_analog]->ROI[GENERAL[_analog]->ROI.size() - 1]->result_float, -1, -1);
  113. result = std::to_string(zif_akt);
  114. }
  115. }
  116. else
  117. {
  118. result = "N";
  119. if (_extendedResolution && (CNNType != Digital))
  120. result = "NN";
  121. }
  122. for (int i = GENERAL[_analog]->ROI.size() - 2; i >= 0; --i)
  123. {
  124. if (GENERAL[_analog]->ROI[i]->result_float >= 0)
  125. {
  126. zif_akt = ZeigerEvalHybrid(GENERAL[_analog]->ROI[i]->result_float, GENERAL[_analog]->ROI[i+1]->result_float, zif_akt);
  127. result = std::to_string(zif_akt) + result;
  128. }
  129. else
  130. {
  131. zif_akt = -1;
  132. result = "N" + result;
  133. }
  134. }
  135. return result;
  136. }
  137. */
  138. return result;
  139. }
  140. int ClassFlowCNNGeneral::ZeigerEvalHybrid(float zahl, float zahl_vorgaenger, int eval_vorgaenger)
  141. {
  142. int ergebnis_nachkomma = ((int) floor(zahl * 10)) % 10;
  143. int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
  144. if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::ZeigerEvalHybrid parameter: " + std::to_string(zahl) + ", " + std::to_string(zahl_vorgaenger) + ", " + std::to_string(eval_vorgaenger));
  145. if (eval_vorgaenger < 0) // keine Vorzahl vorhanden !!! --> Runde die Zahl
  146. {
  147. if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
  148. return ((int) round(zahl) + 10) % 10;
  149. else
  150. return ((int) trunc(zahl) + 10) % 10;
  151. }
  152. if ((zahl_vorgaenger >= 0.5 ) && (zahl_vorgaenger <= 9.5))
  153. {
  154. // kein Ziffernwechsel, da Vorkomma weit genug weg ist (0+/-0.5) --> zahl wird gerundet
  155. return ((int) round(zahl) + 10) % 10;
  156. }
  157. else
  158. {
  159. if (eval_vorgaenger <= 1) // Nulldurchgang hat stattgefunden (!Bewertung über Prev_value und nicht Zahl!) --> hier aufrunden (2.8 --> 3, aber auch 3.1 --> 3)
  160. {
  161. if (ergebnis_nachkomma > 5)
  162. return (ergebnis_vorkomma + 1) % 10;
  163. else
  164. return ergebnis_vorkomma;
  165. }
  166. else // bleibt nur >= 9.5 --> noch kein Nulldurchgang --> 2.8 --> 2, und 3.1 --> 2
  167. {
  168. if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::ZeigerEvalHybrid kein Nulldurchgang: " + std::to_string(ergebnis_vorkomma) + ", " + std::to_string(ergebnis_nachkomma));
  169. if (ergebnis_nachkomma > 5)
  170. return ergebnis_vorkomma;
  171. else
  172. return (ergebnis_vorkomma - 1 + 10) % 10;
  173. }
  174. }
  175. return -1;
  176. /*
  177. if (zahl_vorgaenger > 9.2) // Ziffernwechsel beginnt
  178. {
  179. if (eval_vorgaenger == 0) // Wechsel hat schon stattgefunden
  180. {
  181. return ((int) round(zahl) + 10) % 10; // Annahme, dass die neue Zahl schon in der Nähe des Ziels ist
  182. }
  183. else
  184. {
  185. if (zahl_vorgaenger <= 9.5) // Wechsel startet gerade, aber beginnt erst
  186. {
  187. if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
  188. return ((int) round(zahl) + 10) % 10;
  189. else
  190. return ((int) trunc(zahl) + 10) % 10;
  191. }
  192. else
  193. {
  194. return ((int) trunc(zahl) + 10) % 10; // Wechsel schon weiter fortgeschritten, d.h. über 2 als Nachkomma
  195. }
  196. }
  197. }
  198. if ((ergebnis_nachkomma <= 2) || (ergebnis_nachkomma >= 8)) // Band um die Ziffer --> Runden, da Ziffer im Rahmen Ungenauigkeit erreicht
  199. return ((int) round(zahl) + 10) % 10;
  200. return ((int) trunc(zahl) + 10) % 10;
  201. */
  202. }
  203. int ClassFlowCNNGeneral::ZeigerEval(float zahl, int ziffer_vorgaenger)
  204. {
  205. int ergebnis_nachkomma = ((int) floor(zahl * 10) + 10) % 10;
  206. int ergebnis_vorkomma = ((int) floor(zahl) + 10) % 10;
  207. int ergebnis, ergebnis_rating;
  208. if (ziffer_vorgaenger == -1)
  209. return ergebnis_vorkomma % 10;
  210. // Ist die aktuelle Stelle schon umgesprungen und die Vorstelle noch nicht?
  211. // Akt.: 2.1, Vorstelle = 0.9 => 1.9
  212. ergebnis_rating = ergebnis_nachkomma - ziffer_vorgaenger;
  213. // Keine Ahnung was der Code macht. Bei Übergang Analog zu Digital verursacht er
  214. // eine -1 auf der kleinsten Digitalstelle.
  215. /*if (ergebnis_nachkomma >= 5)
  216. ergebnis_rating-=5;
  217. else
  218. ergebnis_rating+=5;*/
  219. ergebnis = (int) round(zahl);
  220. if (ergebnis_rating < 0)
  221. ergebnis-=1;
  222. if (ergebnis == -1)
  223. ergebnis+=10;
  224. ergebnis = (ergebnis + 10) % 10;
  225. return ergebnis;
  226. }
  227. bool ClassFlowCNNGeneral::ReadParameter(FILE* pfile, string& aktparamgraph)
  228. {
  229. std::vector<string> zerlegt;
  230. aktparamgraph = trim(aktparamgraph);
  231. if (aktparamgraph.size() == 0)
  232. if (!this->GetNextParagraph(pfile, aktparamgraph))
  233. return false;
  234. if ((toUpper(aktparamgraph) != "[ANALOG]") && (toUpper(aktparamgraph) != ";[ANALOG]")
  235. && (toUpper(aktparamgraph) != "[DIGIT]") && (toUpper(aktparamgraph) != ";[DIGIT]")
  236. && (toUpper(aktparamgraph) != "[DIGITS]") && (toUpper(aktparamgraph) != ";[DIGITS]")
  237. ) // Paragraph passt nicht
  238. return false;
  239. if (aktparamgraph[0] == ';')
  240. {
  241. disabled = true;
  242. while (getNextLine(pfile, &aktparamgraph) && !isNewParagraph(aktparamgraph));
  243. printf("[Analog/Digit] is disabled !!!\n");
  244. return true;
  245. }
  246. while (this->getNextLine(pfile, &aktparamgraph) && !this->isNewParagraph(aktparamgraph))
  247. {
  248. zerlegt = this->ZerlegeZeile(aktparamgraph);
  249. if ((toUpper(zerlegt[0]) == "LOGIMAGELOCATION") && (zerlegt.size() > 1))
  250. {
  251. this->LogImageLocation = "/sdcard" + zerlegt[1];
  252. this->isLogImage = true;
  253. }
  254. if ((toUpper(zerlegt[0]) == "LOGIMAGESELECT") && (zerlegt.size() > 1))
  255. {
  256. LogImageSelect = zerlegt[1];
  257. isLogImageSelect = true;
  258. }
  259. if ((toUpper(zerlegt[0]) == "LOGFILERETENTIONINDAYS") && (zerlegt.size() > 1))
  260. {
  261. this->logfileRetentionInDays = std::stoi(zerlegt[1]);
  262. }
  263. // if ((toUpper(zerlegt[0]) == "MODELTYPE") && (zerlegt.size() > 1))
  264. // {
  265. // if (toUpper(zerlegt[1]) == "DIGITHYPRID")
  266. // CNNType = DigitalHyprid;
  267. // }
  268. if ((toUpper(zerlegt[0]) == "MODEL") && (zerlegt.size() > 1))
  269. {
  270. this->cnnmodelfile = zerlegt[1];
  271. }
  272. if ((toUpper(zerlegt[0]) == "CNNGOODTHRESHOLD") && (zerlegt.size() > 1))
  273. {
  274. CNNGoodThreshold = std::stof(zerlegt[1]);
  275. }
  276. if (zerlegt.size() >= 5)
  277. {
  278. general* _analog = GetGENERAL(zerlegt[0], true);
  279. roi* neuroi = _analog->ROI[_analog->ROI.size()-1];
  280. neuroi->posx = std::stoi(zerlegt[1]);
  281. neuroi->posy = std::stoi(zerlegt[2]);
  282. neuroi->deltax = std::stoi(zerlegt[3]);
  283. neuroi->deltay = std::stoi(zerlegt[4]);
  284. neuroi->result_float = -1;
  285. neuroi->image = NULL;
  286. neuroi->image_org = NULL;
  287. }
  288. if ((toUpper(zerlegt[0]) == "SAVEALLFILES") && (zerlegt.size() > 1))
  289. {
  290. if (toUpper(zerlegt[1]) == "TRUE")
  291. SaveAllFiles = true;
  292. }
  293. }
  294. if (!getNetworkParameter())
  295. return false;
  296. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  297. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  298. {
  299. GENERAL[_ana]->ROI[i]->image = new CImageBasis(modelxsize, modelysize, modelchannel);
  300. GENERAL[_ana]->ROI[i]->image_org = new CImageBasis(GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, 3);
  301. }
  302. return true;
  303. }
  304. general* ClassFlowCNNGeneral::FindGENERAL(string _name_number)
  305. {
  306. for (int i = 0; i < GENERAL.size(); ++i)
  307. if (GENERAL[i]->name == _name_number)
  308. return GENERAL[i];
  309. return NULL;
  310. }
  311. general* ClassFlowCNNGeneral::GetGENERAL(string _name, bool _create = true)
  312. {
  313. string _analog, _roi;
  314. int _pospunkt = _name.find_first_of(".");
  315. if (_pospunkt > -1)
  316. {
  317. _analog = _name.substr(0, _pospunkt);
  318. _roi = _name.substr(_pospunkt+1, _name.length() - _pospunkt - 1);
  319. }
  320. else
  321. {
  322. _analog = "default";
  323. _roi = _name;
  324. }
  325. general *_ret = NULL;
  326. for (int i = 0; i < GENERAL.size(); ++i)
  327. if (GENERAL[i]->name == _analog)
  328. _ret = GENERAL[i];
  329. if (!_create) // nicht gefunden und soll auch nicht erzeugt werden
  330. return _ret;
  331. if (_ret == NULL)
  332. {
  333. _ret = new general;
  334. _ret->name = _analog;
  335. GENERAL.push_back(_ret);
  336. }
  337. roi* neuroi = new roi;
  338. neuroi->name = _roi;
  339. _ret->ROI.push_back(neuroi);
  340. printf("GetGENERAL - GENERAL %s - roi %s\n", _analog.c_str(), _roi.c_str());
  341. return _ret;
  342. }
  343. string ClassFlowCNNGeneral::getHTMLSingleStep(string host)
  344. {
  345. string result, zw;
  346. std::vector<HTMLInfo*> htmlinfo;
  347. result = "<p>Found ROIs: </p> <p><img src=\"" + host + "/img_tmp/alg_roi.jpg\"></p>\n";
  348. result = result + "Analog Pointers: <p> ";
  349. htmlinfo = GetHTMLInfo();
  350. for (int i = 0; i < htmlinfo.size(); ++i)
  351. {
  352. std::stringstream stream;
  353. stream << std::fixed << std::setprecision(1) << htmlinfo[i]->val;
  354. zw = stream.str();
  355. result = result + "<img src=\"" + host + "/img_tmp/" + htmlinfo[i]->filename + "\"> " + zw;
  356. delete htmlinfo[i];
  357. }
  358. htmlinfo.clear();
  359. return result;
  360. }
  361. bool ClassFlowCNNGeneral::doFlow(string time)
  362. {
  363. if (disabled)
  364. return true;
  365. if (!doAlignAndCut(time)){
  366. return false;
  367. };
  368. if (debugdetailgeneral) LogFile.WriteToFile("ClassFlowCNNGeneral::doFlow nach Alignment");
  369. doNeuralNetwork(time);
  370. RemoveOldLogs();
  371. return true;
  372. }
  373. bool ClassFlowCNNGeneral::doAlignAndCut(string time)
  374. {
  375. if (disabled)
  376. return true;
  377. CAlignAndCutImage *caic = flowpostalignment->GetAlignAndCutImage();
  378. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  379. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  380. {
  381. printf("General %d - Align&Cut\n", i);
  382. caic->CutAndSave(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, GENERAL[_ana]->ROI[i]->image_org);
  383. if (SaveAllFiles)
  384. {
  385. if (GENERAL[_ana]->name == "default")
  386. GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
  387. else
  388. GENERAL[_ana]->ROI[i]->image_org->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg"));
  389. }
  390. GENERAL[_ana]->ROI[i]->image_org->Resize(modelxsize, modelysize, GENERAL[_ana]->ROI[i]->image);
  391. if (SaveAllFiles)
  392. {
  393. if (GENERAL[_ana]->name == "default")
  394. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  395. else
  396. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  397. }
  398. }
  399. return true;
  400. }
  401. void ClassFlowCNNGeneral::DrawROI(CImageBasis *_zw)
  402. {
  403. if (CNNType == Analogue)
  404. {
  405. int r = 0;
  406. int g = 255;
  407. int b = 0;
  408. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  409. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  410. {
  411. _zw->drawRect(GENERAL[_ana]->ROI[i]->posx, GENERAL[_ana]->ROI[i]->posy, GENERAL[_ana]->ROI[i]->deltax, GENERAL[_ana]->ROI[i]->deltay, r, g, b, 1);
  412. _zw->drawEllipse( (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) (GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
  413. _zw->drawLine((int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) GENERAL[_ana]->ROI[i]->posy, (int) (GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax/2), (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay), r, g, b, 2);
  414. _zw->drawLine((int) GENERAL[_ana]->ROI[i]->posx, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), (int) GENERAL[_ana]->ROI[i]->posx + GENERAL[_ana]->ROI[i]->deltax, (int) (GENERAL[_ana]->ROI[i]->posy + GENERAL[_ana]->ROI[i]->deltay/2), r, g, b, 2);
  415. }
  416. }
  417. else
  418. {
  419. for (int _dig = 0; _dig < GENERAL.size(); ++_dig)
  420. for (int i = 0; i < GENERAL[_dig]->ROI.size(); ++i)
  421. _zw->drawRect(GENERAL[_dig]->ROI[i]->posx, GENERAL[_dig]->ROI[i]->posy, GENERAL[_dig]->ROI[i]->deltax, GENERAL[_dig]->ROI[i]->deltay, 0, 0, (255 - _dig*100), 2);
  422. }
  423. }
  424. bool ClassFlowCNNGeneral::getNetworkParameter()
  425. {
  426. if (disabled)
  427. return true;
  428. CTfLiteClass *tflite = new CTfLiteClass;
  429. string zwcnn = "/sdcard" + cnnmodelfile;
  430. zwcnn = FormatFileName(zwcnn);
  431. printf(zwcnn.c_str());printf("\n");
  432. if (!tflite->LoadModel(zwcnn)) {
  433. printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
  434. LogFile.WriteToFile("Cannot load model");
  435. delete tflite;
  436. return false;
  437. }
  438. tflite->MakeAllocate();
  439. if (CNNType == AutoDetect)
  440. {
  441. tflite->GetInputDimension(false);
  442. modelxsize = tflite->ReadInputDimenstion(0);
  443. modelysize = tflite->ReadInputDimenstion(1);
  444. modelchannel = tflite->ReadInputDimenstion(2);
  445. int _anzoutputdimensions = tflite->GetAnzOutPut();
  446. switch (_anzoutputdimensions)
  447. {
  448. case 2:
  449. CNNType = Analogue;
  450. printf("TFlite-Type set to Analogue\n");
  451. break;
  452. case 10:
  453. CNNType = DoubleHyprid10;
  454. printf("TFlite-Type set to DoubleHyprid10\n");
  455. break;
  456. case 11:
  457. CNNType = Digital;
  458. printf("TFlite-Type set to Digital\n");
  459. break;
  460. case 20:
  461. CNNType = DigitalHyprid10;
  462. printf("TFlite-Type set to DigitalHyprid10\n");
  463. break;
  464. // case 22:
  465. // CNNType = DigitalHyprid;
  466. // printf("TFlite-Type set to DigitalHyprid\n");
  467. // break;
  468. case 100:
  469. CNNType = Digital100;
  470. printf("TFlite-Type set to Digital\n");
  471. break;
  472. default:
  473. printf("ERROR ERROR ERROR - tflite passt nicht zur Firmware - ERROR ERROR ERROR\n");
  474. }
  475. }
  476. delete tflite;
  477. return true;
  478. }
  479. bool ClassFlowCNNGeneral::doNeuralNetwork(string time)
  480. {
  481. if (disabled)
  482. return true;
  483. string logPath = CreateLogFolder(time);
  484. CTfLiteClass *tflite = new CTfLiteClass;
  485. string zwcnn = "/sdcard" + cnnmodelfile;
  486. zwcnn = FormatFileName(zwcnn);
  487. printf(zwcnn.c_str());printf("\n");
  488. if (!tflite->LoadModel(zwcnn)) {
  489. printf("Can't read model file /sdcard%s\n", cnnmodelfile.c_str());
  490. LogFile.WriteToFile("Cannot load model");
  491. delete tflite;
  492. return false;
  493. }
  494. tflite->MakeAllocate();
  495. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  496. {
  497. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  498. {
  499. printf("General %d - TfLite\n", i);
  500. switch (CNNType) {
  501. case Analogue:
  502. {
  503. float f1, f2;
  504. f1 = 0; f2 = 0;
  505. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  506. tflite->Invoke();
  507. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  508. f1 = tflite->GetOutputValue(0);
  509. f2 = tflite->GetOutputValue(1);
  510. float result = fmod(atan2(f1, f2) / (M_PI * 2) + 2, 1);
  511. GENERAL[_ana]->ROI[i]->result_float = result * 10;
  512. printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  513. if (isLogImage)
  514. LogImage(logPath, GENERAL[_ana]->ROI[i]->name, &GENERAL[_ana]->ROI[i]->result_float, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  515. } break;
  516. case Digital:
  517. {
  518. GENERAL[_ana]->ROI[i]->result_klasse = 0;
  519. GENERAL[_ana]->ROI[i]->result_klasse = tflite->GetClassFromImageBasis(GENERAL[_ana]->ROI[i]->image);
  520. printf("Result General(Digit)%i: %d\n", i, GENERAL[_ana]->ROI[i]->result_klasse);
  521. if (isLogImage)
  522. {
  523. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  524. if (isLogImageSelect)
  525. {
  526. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  527. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  528. }
  529. else
  530. {
  531. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  532. }
  533. }
  534. } break;
  535. /*
  536. case DigitalHyprid:
  537. {
  538. int _num, _nachkomma;
  539. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  540. tflite->Invoke();
  541. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  542. _num = tflite->GetOutClassification(0, 10);
  543. _nachkomma = tflite->GetOutClassification(11, 21);
  544. string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
  545. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  546. if ((_num == 10) || (_nachkomma == 10)) // NaN detektiert
  547. GENERAL[_ana]->ROI[i]->result_float = -1;
  548. else
  549. GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
  550. printf("Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  551. _zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
  552. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  553. if (isLogImage)
  554. {
  555. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  556. if (isLogImageSelect)
  557. {
  558. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  559. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  560. }
  561. else
  562. {
  563. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  564. }
  565. }
  566. } break;
  567. */
  568. case DigitalHyprid10:
  569. {
  570. int _num, _nachkomma;
  571. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  572. tflite->Invoke();
  573. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  574. _num = tflite->GetOutClassification(0, 9);
  575. _nachkomma = tflite->GetOutClassification(10, 19);
  576. string _zwres = "Nach Invoke - Nummer: " + to_string(_num) + " Nachkomma: " + to_string(_nachkomma);
  577. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  578. GENERAL[_ana]->ROI[i]->result_float = fmod((double) _num + (((double)_nachkomma)-5)/10 + (double) 10, 10);
  579. printf("Result General(DigitalHyprid)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  580. _zwres = "Result General(DigitalHyprid)" + to_string(i) + ": " + to_string(GENERAL[_ana]->ROI[i]->result_float);
  581. if (debugdetailgeneral) LogFile.WriteToFile(_zwres);
  582. if (isLogImage)
  583. {
  584. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  585. if (isLogImageSelect)
  586. {
  587. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  588. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  589. }
  590. else
  591. {
  592. LogImage(logPath, _imagename, NULL, &GENERAL[_ana]->ROI[i]->result_klasse, time, GENERAL[_ana]->ROI[i]->image_org);
  593. }
  594. }
  595. } break;
  596. case DoubleHyprid10:
  597. {
  598. int _num, _numplus, _numminus;
  599. float _val, _valplus, _valminus;
  600. float _fit;
  601. float _result_save_file;
  602. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  603. tflite->Invoke();
  604. if (debugdetailgeneral) LogFile.WriteToFile("Nach Invoke");
  605. _num = tflite->GetOutClassification(0, 9);
  606. _numplus = (_num + 1) % 10;
  607. _numminus = (_num - 1 + 10) % 10;
  608. _val = tflite->GetOutputValue(_num);
  609. _valplus = tflite->GetOutputValue(_numplus);
  610. _valminus = tflite->GetOutputValue(_numminus);
  611. float result = _num;
  612. if (_valplus > _valminus)
  613. {
  614. result = result + _valplus / (_valplus + _val);
  615. _fit = _val + _valplus;
  616. }
  617. else
  618. {
  619. result = result - _valminus / (_val + _valminus);
  620. _fit = _val + _valminus;
  621. }
  622. if (result > 10)
  623. result = result - 10;
  624. if (result < 0)
  625. result = result + 10;
  626. string zw = "_num (p, m): " + to_string(_num) + " " + to_string(_numplus) + " " + to_string(_numminus);
  627. zw = zw + " _val (p, m): " + to_string(_val) + " " + to_string(_valplus) + " " + to_string(_valminus);
  628. zw = zw + " result: " + to_string(result) + " _fit: " + to_string(_fit);
  629. printf("details cnn: %s\n", zw.c_str());
  630. LogFile.WriteToFile(zw);
  631. _result_save_file = result;
  632. if (_fit < CNNGoodThreshold)
  633. {
  634. GENERAL[_ana]->ROI[i]->isReject = true;
  635. result = -1;
  636. _result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
  637. string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold);
  638. printf("Value Rejected due to Threshold (Fit: %f, Threshold: %f\n", _fit, CNNGoodThreshold);
  639. LogFile.WriteToFile(zw);
  640. }
  641. else
  642. {
  643. GENERAL[_ana]->ROI[i]->isReject = false;
  644. }
  645. GENERAL[_ana]->ROI[i]->result_float = result;
  646. printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  647. if (isLogImage)
  648. {
  649. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  650. if (isLogImageSelect)
  651. {
  652. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  653. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  654. }
  655. else
  656. {
  657. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  658. }
  659. }
  660. }
  661. break;
  662. case Digital100:
  663. {
  664. int _num;
  665. float _fit;
  666. float _result_save_file;
  667. tflite->LoadInputImageBasis(GENERAL[_ana]->ROI[i]->image);
  668. tflite->Invoke();
  669. _num = tflite->GetOutClassification();
  670. _fit = tflite->GetOutputValue(_num);
  671. GENERAL[_ana]->ROI[i]->result_float = (float)_num / 10.0;
  672. _result_save_file = GENERAL[_ana]->ROI[i]->result_float;
  673. if (_fit < CNNGoodThreshold)
  674. {
  675. GENERAL[_ana]->ROI[i]->isReject = true;
  676. GENERAL[_ana]->ROI[i]->result_float = -1;
  677. _result_save_file+= 100; // Für den Fall, dass fit nicht ausreichend, soll trotzdem das Ergebnis mit "-10x.y" abgespeichert werden.
  678. string zw = "Value Rejected due to Threshold (Fit: " + to_string(_fit) + "Threshold: " + to_string(CNNGoodThreshold);
  679. printf("Value Rejected due to Threshold (Fit: %f, Threshold: %f\n", _fit, CNNGoodThreshold);
  680. LogFile.WriteToFile(zw);
  681. }
  682. else
  683. {
  684. GENERAL[_ana]->ROI[i]->isReject = false;
  685. }
  686. printf("Result General(Analog)%i: %f\n", i, GENERAL[_ana]->ROI[i]->result_float);
  687. if (isLogImage)
  688. {
  689. string _imagename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name;
  690. if (isLogImageSelect)
  691. {
  692. if (LogImageSelect.find(GENERAL[_ana]->ROI[i]->name) != std::string::npos)
  693. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  694. }
  695. else
  696. {
  697. LogImage(logPath, _imagename, &_result_save_file, NULL, time, GENERAL[_ana]->ROI[i]->image_org);
  698. }
  699. }
  700. } break;
  701. default:
  702. break;
  703. }
  704. }
  705. }
  706. delete tflite;
  707. return true;
  708. }
  709. bool ClassFlowCNNGeneral::isExtendedResolution(int _number)
  710. {
  711. if (!(CNNType == Digital))
  712. return true;
  713. return false;
  714. }
  715. std::vector<HTMLInfo*> ClassFlowCNNGeneral::GetHTMLInfo()
  716. {
  717. std::vector<HTMLInfo*> result;
  718. for (int _ana = 0; _ana < GENERAL.size(); ++_ana)
  719. for (int i = 0; i < GENERAL[_ana]->ROI.size(); ++i)
  720. {
  721. if (GENERAL[_ana]->name == "default")
  722. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  723. else
  724. GENERAL[_ana]->ROI[i]->image->SaveToFile(FormatFileName("/sdcard/img_tmp/" + GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp"));
  725. HTMLInfo *zw = new HTMLInfo;
  726. if (GENERAL[_ana]->name == "default")
  727. {
  728. zw->filename = GENERAL[_ana]->ROI[i]->name + ".bmp";
  729. zw->filename_org = GENERAL[_ana]->ROI[i]->name + ".jpg";
  730. }
  731. else
  732. {
  733. zw->filename = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".bmp";
  734. zw->filename_org = GENERAL[_ana]->name + "_" + GENERAL[_ana]->ROI[i]->name + ".jpg";
  735. }
  736. if (CNNType == Digital)
  737. zw->val = GENERAL[_ana]->ROI[i]->result_klasse;
  738. else
  739. zw->val = GENERAL[_ana]->ROI[i]->result_float;
  740. zw->image = GENERAL[_ana]->ROI[i]->image;
  741. zw->image_org = GENERAL[_ana]->ROI[i]->image_org;
  742. result.push_back(zw);
  743. }
  744. return result;
  745. }
  746. int ClassFlowCNNGeneral::getAnzahlGENERAL()
  747. {
  748. return GENERAL.size();
  749. }
  750. string ClassFlowCNNGeneral::getNameGENERAL(int _analog)
  751. {
  752. if (_analog < GENERAL.size())
  753. return GENERAL[_analog]->name;
  754. return "GENERAL DOES NOT EXIST";
  755. }
  756. general* ClassFlowCNNGeneral::GetGENERAL(int _analog)
  757. {
  758. if (_analog < GENERAL.size())
  759. return GENERAL[_analog];
  760. return NULL;
  761. }
  762. void ClassFlowCNNGeneral::UpdateNameNumbers(std::vector<std::string> *_name_numbers)
  763. {
  764. for (int _dig = 0; _dig < GENERAL.size(); _dig++)
  765. {
  766. std::string _name = GENERAL[_dig]->name;
  767. bool found = false;
  768. for (int i = 0; i < (*_name_numbers).size(); ++i)
  769. {
  770. if ((*_name_numbers)[i] == _name)
  771. found = true;
  772. }
  773. if (!found)
  774. (*_name_numbers).push_back(_name);
  775. }
  776. }