| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- #include "CTfLiteClass.h"
- // #include "bitmap_image.hpp"
- #include "ClassLogFile.h"
- #include "Helper.h"
- #include <sys/stat.h>
- bool debugdetailtflite = false;
- float CTfLiteClass::GetOutputValue(int nr)
- {
- TfLiteTensor* output2 = this->interpreter->output(0);
- int numeroutput = output2->dims->data[1];
- if ((nr+1) > numeroutput)
- return -1000;
- return output2->data.f[nr];
- }
- int CTfLiteClass::GetClassFromImageBasis(CImageBasis *rs)
- {
- // printf("Before Load image %s\n", _fn.c_str());
- if (!LoadInputImageBasis(rs))
- return -1000;
- Invoke();
- printf("After Invoke \n");
- return GetOutClassification();
- }
- int CTfLiteClass::GetOutClassification()
- {
- TfLiteTensor* output2 = interpreter->output(0);
- float zw_max = 0;
- float zw;
- int zw_class = -1;
- if (output2 == NULL)
- return -1;
- int numeroutput = output2->dims->data[1];
- for (int i = 0; i < numeroutput; ++i)
- {
- zw = output2->data.f[i];
- if (zw > zw_max)
- {
- zw_max = zw;
- zw_class = i;
- }
- }
- // printf("Result Ziffer: %d\n", zw_class);
- return zw_class;
- }
- void CTfLiteClass::GetInputDimension(bool silent = false)
- {
- TfLiteTensor* input2 = this->interpreter->input(0);
- int numdim = input2->dims->size;
- if (!silent) printf("NumDimension: %d\n", numdim);
- int sizeofdim;
- for (int j = 0; j < numdim; ++j)
- {
- sizeofdim = input2->dims->data[j];
- if (!silent) printf("SizeOfDimension %d: %d\n", j, sizeofdim);
- if (j == 1) im_height = sizeofdim;
- if (j == 2) im_width = sizeofdim;
- if (j == 3) im_channel = sizeofdim;
- }
- }
- void CTfLiteClass::GetOutPut()
- {
- TfLiteTensor* output2 = this->interpreter->output(0);
- int numdim = output2->dims->size;
- printf("NumDimension: %d\n", numdim);
- int sizeofdim;
- for (int j = 0; j < numdim; ++j)
- {
- sizeofdim = output2->dims->data[j];
- printf("SizeOfDimension %d: %d\n", j, sizeofdim);
- }
- float fo;
- // Process the inference results.
- int numeroutput = output2->dims->data[1];
- for (int i = 0; i < numeroutput; ++i)
- {
- fo = output2->data.f[i];
- printf("Result %d: %f\n", i, fo);
- }
- }
- void CTfLiteClass::Invoke()
- {
- interpreter->Invoke();
- // printf("Invoke Done.\n");
- }
- bool CTfLiteClass::LoadInputImageBasis(CImageBasis *rs)
- {
- std::string zw = "ClassFlowAnalog::doNeuralNetwork nach LoadInputResizeImage: ";
- unsigned int w = rs->width;
- unsigned int h = rs->height;
- unsigned char red, green, blue;
- // printf("Image: %s size: %d x %d\n", _fn.c_str(), w, h);
- input_i = 0;
- float* input_data_ptr = (interpreter->input(0))->data.f;
- for (int y = 0; y < h; ++y)
- for (int x = 0; x < w; ++x)
- {
- red = rs->GetPixelColor(x, y, 0);
- green = rs->GetPixelColor(x, y, 1);
- blue = rs->GetPixelColor(x, y, 2);
- *(input_data_ptr) = (float) red;
- input_data_ptr++;
- *(input_data_ptr) = (float) green;
- input_data_ptr++;
- *(input_data_ptr) = (float) blue;
- input_data_ptr++;
- }
-
- if (debugdetailtflite) LogFile.WriteToFile("Nach dem Laden in input");
- return true;
- }
- void CTfLiteClass::MakeAllocate()
- {
- static tflite::AllOpsResolver resolver;
- this->interpreter = new tflite::MicroInterpreter(this->model, resolver, this->tensor_arena, this->kTensorArenaSize, this->error_reporter);
- TfLiteStatus allocate_status = this->interpreter->AllocateTensors();
- if (allocate_status != kTfLiteOk) {
- TF_LITE_REPORT_ERROR(error_reporter, "AllocateTensors() failed");
- this->GetInputDimension();
- return;
- }
- // printf("Allocate Done.\n");
- }
- void CTfLiteClass::GetInputTensorSize(){
- float *zw = this->input;
- int test = sizeof(zw);
- printf("Input Tensor Dimension: %d\n", test);
- }
- long CTfLiteClass::GetFileSize(std::string filename)
- {
- struct stat stat_buf;
- long rc = stat(filename.c_str(), &stat_buf);
- return rc == 0 ? stat_buf.st_size : -1;
- }
- unsigned char* CTfLiteClass::ReadFileToCharArray(std::string _fn)
- {
- long size;
-
- size = GetFileSize(_fn);
- if (size == -1)
- {
- printf("\nFile existiert nicht.\n");
- return NULL;
- }
- unsigned char *result = (unsigned char*) malloc(size);
- int anz = 1;
- TickType_t xDelay;
- while (!result && (anz < 6)) // maximal 5x versuchen (= 5s)
- {
- printf("Speicher ist voll - Versuche es erneut: %d.\n", anz);
- xDelay = 1000 / portTICK_PERIOD_MS;
- result = (unsigned char*) malloc(size);
- anz++;
- }
-
- if(result != NULL) {
- // printf("\nSpeicher ist reserviert\n");
- FILE* f = OpenFileAndWait(_fn.c_str(), "rb"); // vorher nur "r"
- fread(result, 1, size, f);
- fclose(f);
- }else {
- printf("\nKein freier Speicher vorhanden.\n");
- }
- return result;
- }
- void CTfLiteClass::LoadModel(std::string _fn){
- #ifdef SUPRESS_TFLITE_ERRORS
- this->error_reporter = new tflite::OwnMicroErrorReporter;
- #else
- this->error_reporter = new tflite::MicroErrorReporter;
- #endif
- unsigned char *rd;
- rd = ReadFileToCharArray(_fn.c_str());
- this->model = tflite::GetModel(rd);
- free(rd);
- TFLITE_MINIMAL_CHECK(model != nullptr);
- }
- CTfLiteClass::CTfLiteClass()
- {
- this->model = nullptr;
- this->interpreter = nullptr;
- this->input = nullptr;
- this->output = nullptr;
- this->kTensorArenaSize = 150 * 1024; /// laut testfile: 108000 - bisher 600
- this->tensor_arena = new uint8_t[kTensorArenaSize];
- }
- CTfLiteClass::~CTfLiteClass()
- {
- delete this->tensor_arena;
- delete this->interpreter;
- delete this->error_reporter;
- }
- namespace tflite {
- int OwnMicroErrorReporter::Report(const char* format, va_list args) {
- return 0;
- }
- }
|