| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/micro/micro_allocator.h"
- #include <cstddef>
- #include <cstdint>
- #include "flatbuffers/flatbuffers.h" // from @flatbuffers
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/core/api/error_reporter.h"
- #include "tensorflow/lite/core/api/flatbuffer_conversions.h"
- #include "tensorflow/lite/core/api/op_resolver.h"
- #include "tensorflow/lite/core/api/tensor_utils.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/micro/compatibility.h"
- #include "tensorflow/lite/micro/memory_helpers.h"
- #include "tensorflow/lite/micro/memory_planner/greedy_memory_planner.h"
- #include "tensorflow/lite/micro/memory_planner/memory_planner.h"
- #include "tensorflow/lite/micro/micro_op_resolver.h"
- #include "tensorflow/lite/micro/simple_memory_allocator.h"
- #include "tensorflow/lite/schema/schema_generated.h"
- #include "tensorflow/lite/schema/schema_utils.h"
- namespace tflite {
- namespace {
- // Maximum number of scratch buffer requests per operator. Operator kernels that
- // request more than this value will receive an exception.
- constexpr size_t kMaxScratchBuffersPerOp = 8;
- // Sentinel value used as a placeholder to mark a ScratchBufferRequest request
- // needs a node id assignment.
- constexpr int kUnassignedScratchBufferRequestIndex = -1;
- // Used to hold information used during allocation calculations.
- struct AllocationInfo {
- size_t bytes;
- void** output_ptr;
- int first_created;
- int last_used;
- int32_t offline_offset;
- bool needs_allocating;
- };
- // We align tensor buffers to 16-byte boundaries, since this is a common
- // requirement for SIMD extensions.
- constexpr int kBufferAlignment = 16;
- constexpr char kOfflineMemAllocMetadata[] = "OfflineMemoryAllocation";
- const TfLiteIntArray kZeroLengthIntArray = {};
- class MicroBuiltinDataAllocator : public BuiltinDataAllocator {
- public:
- explicit MicroBuiltinDataAllocator(SimpleMemoryAllocator* memory_allocator)
- : memory_allocator_(memory_allocator) {}
- void* Allocate(size_t size, size_t alignment_hint) override {
- return memory_allocator_->AllocateFromTail(size, alignment_hint);
- }
- void Deallocate(void* data) override {
- // Do not deallocate, builtin data needs to be available for the life time
- // of the model.
- }
- private:
- SimpleMemoryAllocator* memory_allocator_;
- TF_LITE_REMOVE_VIRTUAL_DELETE
- };
- #if !defined(__clang__)
- // Helper function to check flatbuffer metadata correctness. This function is
- // not called by default. Hence it's not linked in to the final binary code.
- TfLiteStatus CheckOfflinePlannedOffsets(const Model* model,
- ErrorReporter* error_reporter) {
- // Suppress compile warning for unused function
- (void)CheckOfflinePlannedOffsets;
- if (model->metadata()) {
- for (size_t i = 0; i < model->metadata()->size(); ++i) {
- auto metadata = model->metadata()->Get(i);
- if (strncmp(metadata->name()->c_str(), kOfflineMemAllocMetadata,
- strlen(kOfflineMemAllocMetadata)) == 0) {
- auto* subgraphs = model->subgraphs();
- const SubGraph* subgraph = (*subgraphs)[0];
- const flatbuffers::Vector<flatbuffers::Offset<Tensor>>* tensors =
- subgraph->tensors();
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers =
- model->buffers();
- int nbr_tflite_tensors = tensors->size();
- auto* buffer = (*buffers)[metadata->buffer()];
- auto* array = buffer->data();
- const uint32_t* metadata_buffer = (uint32_t*)array->data();
- int version = metadata_buffer[0];
- int subgraph_idx = metadata_buffer[1];
- const int nbr_offline_offsets = metadata_buffer[2];
- #ifndef TF_LITE_STRIP_ERROR_STRINGS
- int* offline_planner_offsets = (int*)&metadata_buffer[3];
- #endif
- TF_LITE_REPORT_ERROR(error_reporter, "==== Model metadata info: =====");
- TF_LITE_REPORT_ERROR(error_reporter,
- "Offline planner metadata found, version %d, "
- "subgraph %d, nbr offline offsets %d",
- version, subgraph_idx, nbr_offline_offsets);
- for (int j = 0; j < nbr_offline_offsets; ++j) {
- TF_LITE_REPORT_ERROR(
- error_reporter,
- "Offline planner tensor index %d, offline offset: %d", j,
- offline_planner_offsets[j]);
- }
- if (version != 1) {
- TF_LITE_REPORT_ERROR(error_reporter, "Version not supported! (%d)\n",
- version);
- return kTfLiteError;
- }
- if (subgraph_idx != 0) {
- TF_LITE_REPORT_ERROR(error_reporter,
- "Only 1 subgraph supported! Subgraph idx (%d)\n",
- subgraph_idx);
- return kTfLiteError;
- }
- if (nbr_tflite_tensors != nbr_offline_offsets) {
- TF_LITE_REPORT_ERROR(error_reporter,
- "Nbr of offline buffer offsets (%d) in metadata "
- "not equal nbr tensors (%d)\n",
- nbr_offline_offsets, nbr_tflite_tensors);
- return kTfLiteError;
- }
- }
- }
- }
- return kTfLiteOk;
- }
- #endif
- // A helper class to construct AllocationInfo array. This array contains the
- // lifetime of tensors / scratch_buffer and will be used to calculate the memory
- // plan. Methods need to be called in order from `Init`, `Add*`, to `Finish`.
- class AllocationInfoBuilder {
- public:
- AllocationInfoBuilder(AllocationInfo* info, size_t tensor_count,
- size_t scratch_buffer_count, ErrorReporter* reporter)
- : info_(info),
- tensor_count_(tensor_count),
- buffer_count_(scratch_buffer_count),
- reporter_(reporter) {}
- // Check if model contains offline planned buffer offsets.
- // - If there's no metadata available, offline_planner_offsets is not set
- // - If there's metadata available, offline_planner_offsets will point to the
- // first offset in the metadata buffer list.
- TfLiteStatus GetOfflinePlannedOffsets(
- const Model* model, const int32_t** offline_planner_offsets);
- // Add allocaiton information for the tensors.
- TfLiteStatus AddTensors(const SubGraph* subgraph,
- const int32_t* offline_offsets,
- TfLiteEvalTensor* eval_tensors);
- // Add allocation information for the scratch buffers.
- TfLiteStatus AddScratchBuffers(
- internal::ScratchBufferRequest* scratch_buffer_requests,
- ScratchBufferHandle* scratch_buffer_handles);
- // Returns a pointer to the built AllocationInfo array.
- const AllocationInfo* Finish() const { return info_; }
- private:
- AllocationInfo* info_ = nullptr;
- size_t tensor_count_ = 0;
- size_t buffer_count_ = 0;
- ErrorReporter* reporter_ = nullptr;
- };
- TfLiteStatus AllocationInfoBuilder::AddTensors(const SubGraph* subgraph,
- const int32_t* offline_offsets,
- TfLiteEvalTensor* eval_tensors) {
- TFLITE_DCHECK(eval_tensors != nullptr);
- // Set up allocation info for all tensors.
- for (size_t i = 0; i < tensor_count_; ++i) {
- AllocationInfo* current = &info_[i];
- current->output_ptr = &(eval_tensors[i].data.data);
- TF_LITE_ENSURE_STATUS(
- TfLiteEvalTensorByteLength(&eval_tensors[i], ¤t->bytes));
- current->first_created = -1;
- current->last_used = -1;
- current->needs_allocating = (eval_tensors[i].data.data == nullptr) &&
- (!subgraph->tensors()->Get(i)->is_variable());
- if (offline_offsets) {
- current->offline_offset = offline_offsets[i];
- } else {
- current->offline_offset = kOnlinePlannedBuffer;
- }
- }
- for (size_t i = 0; i < subgraph->inputs()->size(); ++i) {
- const int tensor_index = subgraph->inputs()->Get(i);
- AllocationInfo* current = &info_[tensor_index];
- current->first_created = 0;
- }
- // Mark all outputs as persistent to the end of the invocation.
- for (size_t i = 0; i < subgraph->outputs()->size(); ++i) {
- const int tensor_index = subgraph->outputs()->Get(i);
- AllocationInfo* current = &info_[tensor_index];
- current->last_used = subgraph->operators()->size() - 1;
- }
- // Figure out when the first and last use of each tensor is.
- for (int i = (subgraph->operators()->size() - 1); i >= 0; --i) {
- const auto* op = subgraph->operators()->Get(i);
- for (size_t n = 0; n < op->inputs()->size(); ++n) {
- const int tensor_index = op->inputs()->Get(n);
- AllocationInfo* current = &info_[tensor_index];
- if (((current->last_used == -1) || (current->last_used < i))) {
- current->last_used = i;
- }
- }
- for (size_t n = 0; n < op->outputs()->size(); ++n) {
- const int tensor_index = op->outputs()->Get(n);
- AllocationInfo* current = &info_[tensor_index];
- if ((current->first_created == -1) || (current->first_created > i)) {
- current->first_created = i;
- }
- }
- }
- // Sanity check for valid tensor lifetime.
- for (size_t i = 0; i < tensor_count_; ++i) {
- AllocationInfo* current = &info_[i];
- // Even though tensor appears to be read only it may still need to be
- // allocated.
- const bool appears_read_only =
- (current->first_created == -1) && (current->last_used != -1);
- const bool has_partial_lifetime =
- !appears_read_only &&
- ((current->first_created == -1) || (current->last_used == -1));
- if (has_partial_lifetime && current->needs_allocating) {
- TF_LITE_REPORT_ERROR(
- reporter_,
- "Logic error in memory planner, tensor %d has an invalid lifetime: "
- "first_created: %d, last_used: %d",
- i, current->first_created, current->last_used);
- return kTfLiteError;
- }
- }
- return kTfLiteOk;
- }
- // The tensor offsets will be encoded in the metadata:[Metadata] field of the
- // Model. The following encoding applies:
- //
- // | Metadata component | Value |
- // | name:string | “OfflineMemoryAllocation” |
- // | buffer:unit | Index of buffer containing memory allocation data |
- //
- // The buffer contents for the memory allocation is a list of 32-bit integers.
- // The number of tensors, n, must be equal to the number of tensors defined in
- // the model. The following encoding applies:
- //
- // | Offset | Value |
- // | 0 | Offline allocation format version – set to 0 |
- // | 1 | Subgraph index to which this allocation applies |
- // | 2 | Number offsets following: n |
- // | 3 | Arena byte offset of tensor #0 or -1 to allocate at runtime |
- // | 4 | Arena byte offset of tensor #1 or -1 to allocate at runtime |
- // | 3+(n-1) | Arena byte offset of tensor #(n-1) or -1 to allocate at runtime |
- TfLiteStatus AllocationInfoBuilder::GetOfflinePlannedOffsets(
- const Model* model, const int32_t** offline_planner_offsets) {
- if (model->metadata()) {
- for (size_t i = 0; i < model->metadata()->size(); ++i) {
- auto metadata = model->metadata()->Get(i);
- if (strncmp(metadata->name()->c_str(), kOfflineMemAllocMetadata,
- strlen(kOfflineMemAllocMetadata)) == 0) {
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers =
- model->buffers();
- auto* buffer = (*buffers)[metadata->buffer()];
- auto* array = buffer->data();
- const uint32_t* metadata_buffer =
- reinterpret_cast<const uint32_t*>(array->data());
- const size_t nbr_tensors = static_cast<size_t>(metadata_buffer[2]);
- *offline_planner_offsets =
- reinterpret_cast<const int32_t*>(&metadata_buffer[3]);
- if (tensor_count_ != nbr_tensors) {
- TF_LITE_REPORT_ERROR(reporter_,
- "Nbr of offline buffer offsets (%d) in metadata "
- "not equal nbr tensors (%d)\n",
- nbr_tensors, tensor_count_);
- return kTfLiteError;
- }
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus AllocationInfoBuilder::AddScratchBuffers(
- internal::ScratchBufferRequest* scratch_buffer_requests,
- ScratchBufferHandle* scratch_buffer_handles) {
- // Set up allocation info for buffers.
- for (size_t i = tensor_count_; i < tensor_count_ + buffer_count_; ++i) {
- internal::ScratchBufferRequest* current_request =
- &(scratch_buffer_requests[i - tensor_count_]);
- ScratchBufferHandle* current_handle =
- &(scratch_buffer_handles[i - tensor_count_]);
- AllocationInfo* current = &info_[i];
- current->output_ptr = reinterpret_cast<void**>(¤t_handle->data);
- current->bytes = current_request->bytes;
- current->first_created = current_request->node_idx;
- current->last_used = current_request->node_idx;
- current->offline_offset = kOnlinePlannedBuffer;
- current->needs_allocating = true;
- }
- return kTfLiteOk;
- }
- TfLiteStatus CreatePlan(ErrorReporter* error_reporter,
- GreedyMemoryPlanner* planner,
- const AllocationInfo* allocation_info,
- size_t allocation_info_size) {
- // Add the tensors to our allocation plan.
- for (size_t i = 0; i < allocation_info_size; ++i) {
- const AllocationInfo* current = &allocation_info[i];
- if (current->needs_allocating) {
- size_t aligned_bytes_required =
- AlignSizeUp(current->bytes, kBufferAlignment);
- if (current->offline_offset == kOnlinePlannedBuffer) {
- TF_LITE_ENSURE_STATUS(
- planner->AddBuffer(error_reporter, aligned_bytes_required,
- current->first_created, current->last_used));
- } else {
- TF_LITE_ENSURE_STATUS(planner->AddBuffer(
- error_reporter, aligned_bytes_required, current->first_created,
- current->last_used, current->offline_offset));
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus CommitPlan(ErrorReporter* error_reporter, MemoryPlanner* planner,
- uint8_t* starting_point,
- const AllocationInfo* allocation_info,
- size_t allocation_info_size) {
- // Figure out the actual memory addresses for each buffer, based on the plan.
- int planner_index = 0;
- for (size_t i = 0; i < allocation_info_size; ++i) {
- const AllocationInfo* current = &allocation_info[i];
- if (current->needs_allocating) {
- int offset = -1;
- TF_LITE_ENSURE_STATUS(
- planner->GetOffsetForBuffer(error_reporter, planner_index, &offset));
- *current->output_ptr = reinterpret_cast<void*>(starting_point + offset);
- ++planner_index;
- }
- }
- return kTfLiteOk;
- }
- } // namespace
- namespace internal {
- // Handles architecture safe mapping of flatbuffer vectors to a TfLite*Array
- // struct. Matching types are required (e.g. float and TfLiteFloatArray).
- // Big-endian systems will always allocate dimension array data in the tail
- // (persistent) section.
- template <typename kFlatBufferVectorType, typename kTfLiteArrayType>
- TfLiteStatus FlatBufferVectorToTfLiteTypeArray(
- SimpleMemoryAllocator* allocator, ErrorReporter* error_reporter,
- const flatbuffers::Vector<kFlatBufferVectorType>* flatbuffer_array,
- kTfLiteArrayType** result) {
- TFLITE_DCHECK(error_reporter != nullptr);
- TFLITE_DCHECK(flatbuffer_array != nullptr);
- // TODO(b/159668691): Consider adding type assertion or breaking this function
- // into multiple functions for each type. std::is_same is c++11 and has a
- // special updated constructor in c++17 that requires a string argument.
- if (FLATBUFFERS_LITTLEENDIAN) {
- // On little-endian machines, TfLite*Array happens to have the same memory
- // layout as flatbuffers:Vector<kFlatBufferVectorType>, so we can
- // reinterpret_cast the flatbuffer vector and avoid a copy and malloc.
- *result = const_cast<kTfLiteArrayType*>(
- reinterpret_cast<const kTfLiteArrayType*>(flatbuffer_array));
- } else {
- // Big-endian architecture can not use the same memory layout as
- // flatbuffers::Vector<kFlatBufferVectorType>. Allocate from the tail and
- // copy values from the flatbuffer into the newly allocated chunk.
- kTfLiteArrayType* array =
- reinterpret_cast<kTfLiteArrayType*>(allocator->AllocateFromTail(
- TfLiteIntArrayGetSizeInBytes(flatbuffer_array->Length()),
- alignof(kTfLiteArrayType)));
- if (array == nullptr) {
- TF_LITE_REPORT_ERROR(
- error_reporter,
- "Failed to allocate %d bytes of memory to copy an array.",
- TfLiteIntArrayGetSizeInBytes(flatbuffer_array->Length()));
- return kTfLiteError;
- }
- array->size = flatbuffer_array->Length();
- for (int i = 0; i < array->size; ++i) {
- array->data[i] = flatbuffer_array->Get(i);
- }
- *result = array;
- }
- return kTfLiteOk;
- }
- // Returns a pointer to any buffer associated with the flatbuffer tensor. Can
- // return nullptr if no buffer is found.
- void* GetFlatbufferTensorBuffer(
- const tflite::Tensor& flatbuffer_tensor,
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers) {
- // We need to figure out where the actual contents of this tensor are stored
- // in memory. We'll check to see if there's a serialized buffer (pretty much
- // the same as a constant op in TensorFlow) associated with this tensor first,
- // and if there is update the runtime structure to point to its location in
- // memory.
- // First see if there's any buffer information in the serialized tensor.
- // TODO(b/170379532): Add better unit tests to validate flatbuffer values.
- void* out_buffer = nullptr;
- if (auto* buffer = (*buffers)[flatbuffer_tensor.buffer()]) {
- // If we've found a buffer, does it have any data?
- if (auto* array = buffer->data()) {
- // If it has any data, is the data size larger than zero?
- if (array->size()) {
- // We've found a buffer with valid data, so update the runtime tensor
- // data structure to point to it.
- out_buffer = const_cast<void*>(static_cast<const void*>(array->data()));
- }
- }
- // TODO(petewarden): It's not clear in what circumstances we could have a
- // buffer in the serialized tensor, but it doesn't have any data in it. Is
- // that a validly-generated file, and if so what does it mean, or is it an
- // error condition? It would be good to tighten up the specification to make
- // it less ambiguous.
- }
- return out_buffer;
- }
- TfLiteStatus InitializeTfLiteTensorFromFlatbuffer(
- SimpleMemoryAllocator* allocator, bool allocate_temp,
- const tflite::Tensor& flatbuffer_tensor,
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers,
- ErrorReporter* error_reporter, TfLiteTensor* result) {
- TFLITE_DCHECK(result != nullptr);
- *result = {};
- // Make sure the serialized type is one we know how to deal with, and convert
- // it from a flatbuffer enum into a constant used by the kernel C API.
- TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(),
- &result->type, error_reporter));
- // Make sure we remember if the serialized tensor is designated as a variable.
- result->is_variable = flatbuffer_tensor.is_variable();
- result->data.data = GetFlatbufferTensorBuffer(flatbuffer_tensor, buffers);
- // TODO(petewarden): Some of these paths aren't getting enough testing
- // coverage, so we should figure out some tests that exercise them.
- if (result->data.data == nullptr) {
- // The tensor contents haven't been set from a serialized buffer, so
- // make a note that they will be allocated from memory. The actual
- // allocation won't happen until later.
- result->allocation_type = kTfLiteArenaRw;
- } else {
- // We set the data from a serialized buffer, so record tha.
- result->allocation_type = kTfLiteMmapRo;
- }
- // Figure out what the size in bytes of the buffer is and store it.
- size_t type_size;
- TF_LITE_ENSURE_STATUS(BytesRequiredForTensor(
- flatbuffer_tensor, &result->bytes, &type_size, error_reporter));
- if (flatbuffer_tensor.shape() == nullptr) {
- // flatbuffer_tensor.shape() can return a nullptr in the case of a scalar
- // tensor.
- result->dims = const_cast<TfLiteIntArray*>(&kZeroLengthIntArray);
- } else {
- // TFLM doesn't allow reshaping the tensor which requires dynamic memory
- // allocation so it is safe to drop the const qualifier. In the future, if
- // we really want to update the tensor shape, we can always pass in a new
- // TfLiteIntArray - especially we have to do so if the dimension is
- TF_LITE_ENSURE_STATUS(FlatBufferVectorToTfLiteTypeArray(
- allocator, error_reporter, flatbuffer_tensor.shape(), &(result->dims)));
- }
- // Copy the quantization information from the serialized data.
- const auto* src_quantization = flatbuffer_tensor.quantization();
- if (src_quantization && src_quantization->scale() &&
- (src_quantization->scale()->size() > 0) &&
- src_quantization->zero_point() &&
- (src_quantization->zero_point()->size() > 0)) {
- // Always populate the TfLiteTensor.params field, even if there are
- // per-channel quantization parameters.
- result->params.scale = src_quantization->scale()->Get(0);
- // Note that the zero_point field in the FlatBuffers schema is a 64-bit
- // integer, but the zero_point field in the TfLiteQuantizationParams struct
- // is a 32-bit integer.
- result->params.zero_point =
- static_cast<int32_t>(src_quantization->zero_point()->Get(0));
- // Populate per-channel quantization params.
- int channels = src_quantization->scale()->size();
- TfLiteAffineQuantization* quantization =
- allocate_temp
- ? reinterpret_cast<TfLiteAffineQuantization*>(
- allocator->AllocateTemp(sizeof(TfLiteAffineQuantization),
- alignof(TfLiteAffineQuantization)))
- : reinterpret_cast<TfLiteAffineQuantization*>(
- allocator->AllocateFromTail(
- sizeof(TfLiteAffineQuantization),
- alignof(TfLiteAffineQuantization)));
- if (quantization == nullptr) {
- TF_LITE_REPORT_ERROR(error_reporter,
- "Unable to allocate TfLiteAffineQuantization.\n");
- return kTfLiteError;
- }
- // TODO(b/153688719): Reduce tail allocation by using a global zero-point
- // buffer. This value can not be reused from the flatbuffer since the
- // zero_point is stored as a int64_t.
- quantization->zero_point =
- allocate_temp
- ? reinterpret_cast<TfLiteIntArray*>(allocator->AllocateTemp(
- TfLiteIntArrayGetSizeInBytes(channels),
- alignof(TfLiteIntArray)))
- : reinterpret_cast<TfLiteIntArray*>(allocator->AllocateFromTail(
- TfLiteIntArrayGetSizeInBytes(channels),
- alignof(TfLiteIntArray)));
- if (quantization->zero_point == nullptr) {
- TF_LITE_REPORT_ERROR(error_reporter,
- "Unable to allocate quantization->zero_point.\n");
- return kTfLiteError;
- }
- TF_LITE_ENSURE_STATUS(FlatBufferVectorToTfLiteTypeArray(
- allocator, error_reporter, src_quantization->scale(),
- &quantization->scale));
- quantization->zero_point->size = channels;
- int* zero_point_data = quantization->zero_point->data;
- for (int i = 0; i < channels; i++) {
- zero_point_data[i] = src_quantization->zero_point()->Get(i);
- }
- // TODO(rocky): Need to add a micro_allocator test case that fails when
- // this is not copied:
- quantization->quantized_dimension = src_quantization->quantized_dimension();
- result->quantization = {kTfLiteAffineQuantization, quantization};
- }
- return kTfLiteOk;
- }
- TfLiteStatus InitializeTfLiteEvalTensorFromFlatbuffer(
- SimpleMemoryAllocator* allocator, const tflite::Tensor& flatbuffer_tensor,
- const flatbuffers::Vector<flatbuffers::Offset<Buffer>>* buffers,
- ErrorReporter* error_reporter, TfLiteEvalTensor* result) {
- *result = {};
- // Make sure the serialized type is one we know how to deal with, and convert
- // it from a flatbuffer enum into a constant used by the kernel C API.
- TF_LITE_ENSURE_STATUS(ConvertTensorType(flatbuffer_tensor.type(),
- &result->type, error_reporter));
- result->data.data = GetFlatbufferTensorBuffer(flatbuffer_tensor, buffers);
- if (flatbuffer_tensor.shape() == nullptr) {
- // flatbuffer_tensor.shape() can return a nullptr in the case of a scalar
- // tensor.
- result->dims = const_cast<TfLiteIntArray*>(&kZeroLengthIntArray);
- } else {
- TF_LITE_ENSURE_STATUS(FlatBufferVectorToTfLiteTypeArray(
- allocator, error_reporter, flatbuffer_tensor.shape(), &(result->dims)));
- }
- return kTfLiteOk;
- }
- } // namespace internal
- MicroAllocator::MicroAllocator(SimpleMemoryAllocator* memory_allocator,
- ErrorReporter* error_reporter)
- : memory_allocator_(memory_allocator),
- error_reporter_(error_reporter),
- model_is_allocating_(false) {}
- MicroAllocator::~MicroAllocator() {}
- MicroAllocator* MicroAllocator::Create(uint8_t* tensor_arena, size_t arena_size,
- ErrorReporter* error_reporter) {
- uint8_t* aligned_arena = AlignPointerUp(tensor_arena, kBufferAlignment);
- size_t aligned_arena_size = tensor_arena + arena_size - aligned_arena;
- return Create(SimpleMemoryAllocator::Create(error_reporter, aligned_arena,
- aligned_arena_size),
- error_reporter);
- }
- MicroAllocator* MicroAllocator::Create(SimpleMemoryAllocator* memory_allocator,
- ErrorReporter* error_reporter) {
- TFLITE_DCHECK(memory_allocator != nullptr);
- TFLITE_DCHECK(error_reporter != nullptr);
- uint8_t* allocator_buffer = memory_allocator->AllocateFromTail(
- sizeof(MicroAllocator), alignof(MicroAllocator));
- MicroAllocator* allocator =
- new (allocator_buffer) MicroAllocator(memory_allocator, error_reporter);
- return allocator;
- }
- TfLiteStatus MicroAllocator::StartModelAllocation(
- const Model* model, const MicroOpResolver& op_resolver,
- NodeAndRegistration** node_and_registrations,
- TfLiteEvalTensor** eval_tensors) {
- TFLITE_DCHECK(model != nullptr);
- if (model_is_allocating_) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "MicroAllocator: Model allocation started before "
- "finishing previously allocated model");
- return kTfLiteError;
- }
- model_is_allocating_ = true;
- TF_LITE_ENSURE_STATUS(InitScratchBufferData());
- TF_LITE_ENSURE_STATUS(AllocateTfLiteEvalTensors(model, eval_tensors));
- TF_LITE_ENSURE_STATUS(
- AllocateNodeAndRegistrations(model, node_and_registrations));
- TF_LITE_ENSURE_STATUS(PrepareNodeAndRegistrationDataFromFlatbuffer(
- model, op_resolver, *node_and_registrations));
- return kTfLiteOk;
- }
- TfLiteStatus MicroAllocator::FinishModelAllocation(
- const Model* model, TfLiteEvalTensor* eval_tensors,
- ScratchBufferHandle** scratch_buffer_handles) {
- if (!model_is_allocating_) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "MicroAllocator: Model allocation finished before "
- "starting allocating model");
- return kTfLiteError;
- }
- const SubGraph* subgraph = GetSubGraphFromModel(model);
- TFLITE_DCHECK(subgraph != nullptr);
- TF_LITE_ENSURE_STATUS(AllocateScratchBufferHandles(
- scratch_buffer_handles, scratch_buffer_request_count_));
- TF_LITE_ENSURE_STATUS(CommitStaticMemoryPlan(model, subgraph, eval_tensors,
- *scratch_buffer_handles));
- TF_LITE_ENSURE_STATUS(AllocateVariables(subgraph, eval_tensors));
- model_is_allocating_ = false;
- return kTfLiteOk;
- }
- void* MicroAllocator::AllocatePersistentBuffer(size_t bytes) {
- return memory_allocator_->AllocateFromTail(bytes, kBufferAlignment);
- }
- TfLiteStatus MicroAllocator::RequestScratchBufferInArena(size_t bytes,
- int* buffer_idx) {
- // All scratch buffer requests are stored in the head section of the arena
- // when a model is in the prepare phase. First align a scratch buffer request
- // pointer to the start of the head:
- internal::ScratchBufferRequest* requests = GetScratchBufferRequests();
- // Count the number of requested scratch buffers for the current node:
- size_t current_node_request_count = 0;
- for (size_t i = 0; i < scratch_buffer_request_count_; ++i) {
- if (requests[i].node_idx == kUnassignedScratchBufferRequestIndex) {
- ++current_node_request_count;
- }
- }
- // First, ensure that the per-kernel request has not exceeded the limit:
- if (current_node_request_count >= kMaxScratchBuffersPerOp) {
- TF_LITE_REPORT_ERROR(
- error_reporter_,
- "Scratch buffer request exeeds limit per operator (%d)",
- kMaxScratchBuffersPerOp);
- return kTfLiteError;
- }
- // Initialize and assign values for the request at the current index:
- internal::ScratchBufferRequest* current_request =
- &requests[scratch_buffer_request_count_];
- *current_request = {};
- // Assign -1 as a sentinel value that will be updated when the node finishes
- // allocating:
- current_request->bytes = bytes;
- current_request->node_idx = kUnassignedScratchBufferRequestIndex;
- // Assign the current request index to the out-param:
- *buffer_idx = scratch_buffer_request_count_;
- // Bump the request count to prepare for the next request:
- ++scratch_buffer_request_count_;
- return kTfLiteOk;
- }
- TfLiteStatus MicroAllocator::FinishPrepareNodeAllocations(int node_id) {
- // When a node has finished preparing, all temp allocations performed by the
- // kernel should be cleaned up:
- ResetTempAllocations();
- // Find and update any new scratch buffer requests for the current node:
- internal::ScratchBufferRequest* requests = GetScratchBufferRequests();
- for (size_t i = 0; i < scratch_buffer_request_count_; ++i) {
- // A request with a node_idx of -1 is a sentinel value used to indicate this
- // was a new request for the current node. The allocator finally knows the
- // node index at this point. Assign the value and update the list of new
- // requests so the head section can be adjusted to allow for the next kernel
- // to allocate at most kMaxScratchBuffersPerOp requests:
- if (requests[i].node_idx == kUnassignedScratchBufferRequestIndex) {
- requests[i].node_idx = node_id;
- }
- }
- // Ensure that the head is re-adjusted to allow for another at-most
- // kMaxScratchBuffersPerOp scratch buffer requests in the next operator:
- TF_LITE_ENSURE_STATUS(memory_allocator_->SetHeadBufferSize(
- sizeof(internal::ScratchBufferRequest) *
- (scratch_buffer_request_count_ + kMaxScratchBuffersPerOp),
- alignof(internal::ScratchBufferRequest)));
- return kTfLiteOk;
- }
- size_t MicroAllocator::used_bytes() const {
- return memory_allocator_->GetUsedBytes();
- }
- TfLiteStatus MicroAllocator::AllocateNodeAndRegistrations(
- const Model* model, NodeAndRegistration** node_and_registrations) {
- TFLITE_DCHECK(node_and_registrations);
- const SubGraph* subgraph = GetSubGraphFromModel(model);
- TFLITE_DCHECK(subgraph != nullptr);
- NodeAndRegistration* output = reinterpret_cast<NodeAndRegistration*>(
- memory_allocator_->AllocateFromTail(
- sizeof(NodeAndRegistration) * subgraph->operators()->size(),
- alignof(NodeAndRegistration)));
- if (output == nullptr) {
- TF_LITE_REPORT_ERROR(
- error_reporter_,
- "Failed to allocate memory for node_and_registrations.");
- return kTfLiteError;
- }
- *node_and_registrations = output;
- return kTfLiteOk;
- }
- TfLiteStatus MicroAllocator::PrepareNodeAndRegistrationDataFromFlatbuffer(
- const Model* model, const MicroOpResolver& op_resolver,
- NodeAndRegistration* node_and_registrations) {
- TFLITE_DCHECK(model != nullptr);
- TFLITE_DCHECK(node_and_registrations != nullptr);
- const SubGraph* subgraph = GetSubGraphFromModel(model);
- TFLITE_DCHECK(subgraph != nullptr);
- TfLiteStatus status = kTfLiteOk;
- auto* opcodes = model->operator_codes();
- MicroBuiltinDataAllocator builtin_data_allocator(memory_allocator_);
- for (size_t i = 0; i < subgraph->operators()->size(); ++i) {
- const auto* op = subgraph->operators()->Get(i);
- const size_t index = op->opcode_index();
- if (index >= opcodes->size()) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "Missing registration for opcode_index %d\n", index);
- return kTfLiteError;
- }
- auto* opcode = (*opcodes)[index];
- status =
- GetRegistrationFromOpCode(opcode, op_resolver, error_reporter_,
- &(node_and_registrations[i].registration));
- if (status != kTfLiteOk) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "Failed to get registration from op code %s\n ",
- EnumNameBuiltinOperator(GetBuiltinCode(opcode)));
- return status;
- }
- const auto* registration = node_and_registrations[i].registration;
- if (registration == nullptr) {
- TF_LITE_REPORT_ERROR(error_reporter_, "Skipping op for opcode_index %d\n",
- index);
- return kTfLiteError;
- }
- BuiltinOperator op_type =
- static_cast<BuiltinOperator>(registration->builtin_code);
- const char* custom_data = nullptr;
- size_t custom_data_size = 0;
- unsigned char* builtin_data = nullptr;
- if (op_type == BuiltinOperator_CUSTOM) {
- // Custom Ops may or may not have a non-null custom_options field.
- if (op->custom_options() != nullptr) {
- custom_data =
- reinterpret_cast<const char*>(op->custom_options()->data());
- custom_data_size = op->custom_options()->size();
- }
- } else {
- if (op->custom_options() != nullptr) {
- TF_LITE_REPORT_ERROR(
- error_reporter_,
- "Unsupported behavior: found builtin operator %s with custom "
- "options.\n",
- EnumNameBuiltinOperator(op_type));
- return kTfLiteError;
- }
- MicroOpResolver::BuiltinParseFunction parser =
- op_resolver.GetOpDataParser(op_type);
- if (parser == nullptr) {
- TF_LITE_REPORT_ERROR(error_reporter_, "Did not find a parser for %s",
- EnumNameBuiltinOperator(op_type));
- return kTfLiteError;
- }
- TF_LITE_ENSURE_STATUS(parser(op, error_reporter_, &builtin_data_allocator,
- (void**)(&builtin_data)));
- }
- TfLiteIntArray* inputs_array;
- TF_LITE_ENSURE_STATUS(internal::FlatBufferVectorToTfLiteTypeArray(
- memory_allocator_, error_reporter_, op->inputs(), &inputs_array));
- TfLiteIntArray* outputs_array;
- TF_LITE_ENSURE_STATUS(internal::FlatBufferVectorToTfLiteTypeArray(
- memory_allocator_, error_reporter_, op->outputs(), &outputs_array));
- TfLiteNode* node = &(node_and_registrations[i].node);
- *node = {};
- node->inputs = inputs_array;
- node->outputs = outputs_array;
- node->builtin_data = reinterpret_cast<void*>(builtin_data);
- node->custom_initial_data = custom_data;
- node->custom_initial_data_size = custom_data_size;
- }
- return kTfLiteOk;
- }
- TfLiteTensor* MicroAllocator::AllocatePersistentTfLiteTensor(
- const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) {
- const SubGraph* subgraph = GetSubGraphFromModel(model);
- TFLITE_DCHECK(subgraph != nullptr);
- // This value is allocated from persistent arena space. It is guaranteed to be
- // around for the lifetime of the application.
- TfLiteTensor* tensor =
- AllocatePersistentTfLiteTensorInternal(model, eval_tensors, tensor_index);
- // Populate any fields from the flatbuffer, since this TfLiteTensor struct is
- // allocated in the persistent section of the arena, ensure that additional
- // allocations also take place in that section of the arena.
- if (PopulateTfLiteTensorFromFlatbuffer(model, subgraph, tensor, tensor_index,
- /*allocate_temp=*/false) !=
- kTfLiteOk) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "Failed to populate a persistent TfLiteTensor struct "
- "from flatbuffer data!");
- return nullptr;
- }
- if (eval_tensors != nullptr) {
- // Tensor buffers that are allocated at runtime (e.g. non-weight buffers)
- // and not located in the flatbuffer are stored on the pre-allocated list of
- // TfLiteEvalTensors structs. These structs are the source of truth, simply
- // point the corresponding buffer to the new TfLiteTensor data value.
- tensor->data.data = eval_tensors[tensor_index].data.data;
- }
- return tensor;
- }
- TfLiteTensor* MicroAllocator::AllocateTempTfLiteTensor(
- const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) {
- const SubGraph* subgraph = GetSubGraphFromModel(model);
- TFLITE_DCHECK(subgraph != nullptr);
- // This value is allocated from temporary arena space. It is guaranteed to be
- // around for at least the scope of the calling function. Since this struct
- // allocation takes place in temp space, no need to own or cleanup.
- TfLiteTensor* tensor =
- reinterpret_cast<TfLiteTensor*>(memory_allocator_->AllocateTemp(
- sizeof(TfLiteTensor), alignof(TfLiteTensor)));
- // Populate any fields from the flatbuffer, since this TfLiteTensor struct is
- // allocated in the temp section of the arena, ensure that additional
- // allocations also take place in that section of the arena.
- if (PopulateTfLiteTensorFromFlatbuffer(model, subgraph, tensor, tensor_index,
- /*allocate_temp=*/true) != kTfLiteOk) {
- TF_LITE_REPORT_ERROR(
- error_reporter_,
- "Failed to populate a temp TfLiteTensor struct from flatbuffer data!");
- return nullptr;
- }
- if (eval_tensors != nullptr) {
- // Tensor buffers that are allocated at runtime (e.g. non-weight buffers)
- // and not located in the flatbuffer are stored on the pre-allocated list of
- // TfLiteEvalTensors structs. These structs are the source of truth, simply
- // point the corresponding buffer to the new TfLiteTensor data value.
- tensor->data.data = eval_tensors[tensor_index].data.data;
- }
- return tensor;
- }
- void MicroAllocator::ResetTempAllocations() {
- memory_allocator_->ResetTempAllocations();
- }
- TfLiteStatus MicroAllocator::AllocateTfLiteEvalTensors(
- const Model* model, TfLiteEvalTensor** eval_tensors) {
- TFLITE_DCHECK(eval_tensors != nullptr);
- const SubGraph* subgraph = GetSubGraphFromModel(model);
- TFLITE_DCHECK(subgraph != nullptr);
- size_t alloc_count = subgraph->tensors()->size();
- TfLiteEvalTensor* tensors =
- reinterpret_cast<TfLiteEvalTensor*>(memory_allocator_->AllocateFromTail(
- sizeof(TfLiteEvalTensor) * alloc_count, alignof(TfLiteEvalTensor)));
- if (tensors == nullptr) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "Failed to allocate memory for context->eval_tensors, "
- "%d bytes required",
- sizeof(TfLiteEvalTensor) * alloc_count);
- return kTfLiteError;
- }
- for (size_t i = 0; i < alloc_count; ++i) {
- TfLiteStatus status = internal::InitializeTfLiteEvalTensorFromFlatbuffer(
- memory_allocator_, *subgraph->tensors()->Get(i), model->buffers(),
- error_reporter_, &tensors[i]);
- if (status != kTfLiteOk) {
- TF_LITE_REPORT_ERROR(error_reporter_, "Failed to initialize tensor %d",
- i);
- return kTfLiteError;
- }
- }
- *eval_tensors = tensors;
- return kTfLiteOk;
- }
- TfLiteStatus MicroAllocator::AllocateVariables(const SubGraph* subgraph,
- TfLiteEvalTensor* eval_tensors) {
- for (size_t i = 0; i < subgraph->tensors()->size(); ++i) {
- auto* tensor = subgraph->tensors()->Get(i);
- if (tensor->is_variable()) {
- size_t buffer_size;
- TF_LITE_ENSURE_STATUS(
- TfLiteEvalTensorByteLength(&eval_tensors[i], &buffer_size));
- eval_tensors[i].data.data =
- memory_allocator_->AllocateFromTail(buffer_size, kBufferAlignment);
- if (eval_tensors[i].data.data == nullptr) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "Failed to allocate variable tensor of size %d",
- buffer_size);
- return kTfLiteError;
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteTensor* MicroAllocator::AllocatePersistentTfLiteTensorInternal(
- const Model* model, TfLiteEvalTensor* eval_tensors, int tensor_index) {
- return reinterpret_cast<TfLiteTensor*>(memory_allocator_->AllocateFromTail(
- sizeof(TfLiteTensor), alignof(TfLiteTensor)));
- }
- TfLiteStatus MicroAllocator::PopulateTfLiteTensorFromFlatbuffer(
- const Model* model, const SubGraph* subgraph, TfLiteTensor* tensor,
- int tensor_index, bool allocate_temp) {
- // TODO(b/162311891): This method serves as a stub to ensure quantized
- // allocations in the tail can be recorded. Once the interpreter has APIs for
- // accessing buffers on TfLiteEvalTensor this method can be dropped.
- return internal::InitializeTfLiteTensorFromFlatbuffer(
- memory_allocator_, allocate_temp, *subgraph->tensors()->Get(tensor_index),
- model->buffers(), error_reporter_, tensor);
- }
- ErrorReporter* MicroAllocator::error_reporter() const {
- return error_reporter_;
- }
- const SubGraph* MicroAllocator::GetSubGraphFromModel(const Model* model) {
- auto* subgraphs = model->subgraphs();
- if (subgraphs->size() != 1) {
- TF_LITE_REPORT_ERROR(error_reporter_,
- "Only 1 subgraph is currently supported.\n");
- return nullptr;
- }
- return (*subgraphs)[0];
- }
- TfLiteStatus MicroAllocator::CommitStaticMemoryPlan(
- const Model* model, const SubGraph* subgraph,
- TfLiteEvalTensor* eval_tensors,
- ScratchBufferHandle* scratch_buffer_handles) {
- size_t head_usage = 0;
- // Create static memory plan
- // 1. Calculate AllocationInfo to know the lifetime of each tensor/buffer.
- // 2. Add them into the planner (such as the GreedyMemoryPlanner).
- // 3. Static memory planning using the planner.
- // 4. Set tensor/buffer pointers based on the offsets from the previous step.
- //
- // Note that AllocationInfo is only needed for creating the plan. It will be
- // allocated from the temp section and cleaned up at the bottom of this
- // function.
- size_t allocation_info_count =
- subgraph->tensors()->size() + scratch_buffer_request_count_;
- size_t bytes = sizeof(AllocationInfo) * allocation_info_count;
- // Allocate an array of AllocationInfo structs from the temp section. This
- // struct will be used by AllocationInfoBuilder to find buffer usage.
- AllocationInfo* allocation_info = reinterpret_cast<AllocationInfo*>(
- memory_allocator_->AllocateTemp(bytes, alignof(AllocationInfo)));
- if (allocation_info == nullptr) {
- TF_LITE_REPORT_ERROR(
- error_reporter_,
- "Failed to allocate memory for allocation_info, %d bytes required",
- bytes);
- return kTfLiteError;
- }
- // Use the AllocationInfoBuilder class to help determine where buffers are
- // used in the subgraph.
- AllocationInfoBuilder builder(allocation_info, subgraph->tensors()->size(),
- scratch_buffer_request_count_, error_reporter_);
- const int32_t* offline_planner_offsets = nullptr;
- TF_LITE_ENSURE_STATUS(
- builder.GetOfflinePlannedOffsets(model, &offline_planner_offsets));
- TF_LITE_ENSURE_STATUS(
- builder.AddTensors(subgraph, offline_planner_offsets, eval_tensors));
- internal::ScratchBufferRequest* scratch_buffer_requests =
- GetScratchBufferRequests();
- TF_LITE_ENSURE_STATUS(builder.AddScratchBuffers(scratch_buffer_requests,
- scratch_buffer_handles));
- // Remaining arena size that memory planner can use for calculating offsets.
- size_t remaining_arena_size =
- memory_allocator_->GetAvailableMemory(kBufferAlignment);
- uint8_t* planner_arena =
- memory_allocator_->AllocateTemp(remaining_arena_size, kBufferAlignment);
- TF_LITE_ENSURE(error_reporter_, planner_arena != nullptr);
- GreedyMemoryPlanner planner(planner_arena, remaining_arena_size);
- TF_LITE_ENSURE_STATUS(CreatePlan(error_reporter_, &planner, allocation_info,
- allocation_info_count));
- // Reset all temp allocations used above:
- memory_allocator_->ResetTempAllocations();
- size_t actual_available_arena_size =
- memory_allocator_->GetAvailableMemory(kBufferAlignment);
- // Make sure we have enough arena size.
- if (planner.GetMaximumMemorySize() > actual_available_arena_size) {
- TF_LITE_REPORT_ERROR(
- error_reporter_,
- "Arena size is too small for all buffers. Needed %u but only "
- "%u was available.",
- planner.GetMaximumMemorySize(), actual_available_arena_size);
- return kTfLiteError;
- }
- // Commit the plan.
- TF_LITE_ENSURE_STATUS(CommitPlan(error_reporter_, &planner,
- memory_allocator_->GetHeadBuffer(),
- allocation_info, allocation_info_count));
- head_usage = planner.GetMaximumMemorySize();
- // The head is used to store memory plans for one model at a time during the
- // model preparation stage, and is re-purposed to store scratch buffer handles
- // during model invocation. The head must be as large as the greater of the
- // largest model memory plan's size and the total space required for all
- // scratch buffer handles.
- if (max_head_buffer_usage_ < head_usage) {
- max_head_buffer_usage_ = head_usage;
- }
- // The head is used for storing scratch buffer allocations before finalizing a
- // memory plan in this function. Ensure that the head is set to the largest
- // memory plan sent through the allocator:
- TF_LITE_ENSURE_STATUS(memory_allocator_->SetHeadBufferSize(
- max_head_buffer_usage_, kBufferAlignment));
- return kTfLiteOk;
- }
- TfLiteStatus MicroAllocator::AllocateScratchBufferHandles(
- ScratchBufferHandle** scratch_buffer_handles, size_t handle_count) {
- TFLITE_DCHECK(scratch_buffer_handles != nullptr);
- if (scratch_buffer_request_count_ == 0) {
- // No scratch buffer requests were requested during model allocation.
- return kTfLiteOk;
- }
- // Allocate a consecutive block of memory store the scratch buffer handles.
- // This alignment ensures quick lookup during inference time for the model:
- *scratch_buffer_handles = reinterpret_cast<ScratchBufferHandle*>(
- memory_allocator_->AllocateFromTail(
- sizeof(ScratchBufferHandle) * handle_count,
- alignof(ScratchBufferHandle)));
- return kTfLiteOk;
- }
- TfLiteStatus MicroAllocator::InitScratchBufferData() {
- // A model is preparing to allocate resources, ensure that scratch buffer
- // request counter is cleared:
- scratch_buffer_request_count_ = 0;
- // All requests will be stored in the head section. Each kernel is allowed at
- // most kMaxScratchBuffersPerOp requests. Adjust the head to reserve at most
- // that many requests to begin:
- TF_LITE_ENSURE_STATUS(memory_allocator_->SetHeadBufferSize(
- sizeof(internal::ScratchBufferRequest) * kMaxScratchBuffersPerOp,
- alignof(internal::ScratchBufferRequest)));
- return kTfLiteOk;
- }
- internal::ScratchBufferRequest* MicroAllocator::GetScratchBufferRequests() {
- return reinterpret_cast<internal::ScratchBufferRequest*>(
- AlignPointerUp(memory_allocator_->GetHeadBuffer(),
- alignof(internal::ScratchBufferRequest)));
- }
- } // namespace tflite
|