| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/fill.h"
- #include <stdint.h>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- namespace {
- template <typename T>
- TfLiteStatus EnsureEqImpl(TfLiteContext* context, const TfLiteIntArray* array,
- const TfLiteTensor* tensor) {
- for (int i = 0; i < array->size; ++i) {
- TF_LITE_ENSURE_EQ(context, array->data[i], GetTensorData<T>(tensor)[i]);
- }
- return kTfLiteOk;
- }
- // Ensure the equality of an int array and a tensor, which must be
- // one-dimensional and of an integer type.
- TfLiteStatus EnsureEq(TfLiteContext* context, const TfLiteIntArray* array,
- const TfLiteTensor* tensor) {
- TF_LITE_ENSURE_EQ(context, NumDimensions(tensor), 1);
- const auto tensor_len = tensor->dims->data[0];
- TF_LITE_ENSURE_EQ(context, array->size, tensor_len);
- switch (tensor->type) {
- case kTfLiteInt8:
- return EnsureEqImpl<int8_t>(context, array, tensor);
- case kTfLiteInt16:
- return EnsureEqImpl<int16_t>(context, array, tensor);
- case kTfLiteInt32:
- return EnsureEqImpl<int32_t>(context, array, tensor);
- case kTfLiteInt64:
- return EnsureEqImpl<int64_t>(context, array, tensor);
- default:
- MicroPrintf("cannot compare int array to tensor of type %d.",
- tensor->type);
- return kTfLiteError;
- }
- }
- constexpr int kDimsTensor = 0;
- constexpr int kValueTensor = 1;
- constexpr int kOutputTensor = 0;
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- MicroContext* micro_context = GetMicroContext(context);
- // Ensure inputs and outputs exist.
- TfLiteTensor* dims =
- micro_context->AllocateTempInputTensor(node, kDimsTensor);
- TF_LITE_ENSURE(context, dims != nullptr);
- TfLiteTensor* value =
- micro_context->AllocateTempInputTensor(node, kValueTensor);
- TF_LITE_ENSURE(context, value != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- // The value tensor must be a scalar.
- TF_LITE_ENSURE_EQ(context, NumDimensions(value), 0);
- // The value type and output type must match.
- TF_LITE_ENSURE_EQ(context, value->type, output->type);
- // The dimension of the output tensor is known in model already.
- TFLITE_DCHECK(output->dims != nullptr);
- if (dims->data.data != nullptr) {
- // When the dims tensor is specified in model already (i.e. is not an
- // activation tensor), the dims tensor must match the output tensor shape.
- // As a byproduct, ensures the dims tensor is of an integer type.
- TF_LITE_ENSURE_OK(context, EnsureEq(context, output->dims, dims));
- }
- micro_context->DeallocateTempTfLiteTensor(dims);
- micro_context->DeallocateTempTfLiteTensor(value);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- template <typename T>
- void FillImpl(const TfLiteEvalTensor* value, TfLiteEvalTensor* output) {
- reference_ops::Fill(
- micro::GetTensorShape(value), micro::GetTensorData<T>(value),
- micro::GetTensorShape(output), micro::GetTensorData<T>(output));
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- const TfLiteEvalTensor* value =
- micro::GetEvalInput(context, node, kValueTensor);
- TfLiteEvalTensor* output = micro::GetEvalOutput(context, node, kOutputTensor);
- switch (value->type) {
- case kTfLiteFloat32:
- FillImpl<float>(value, output);
- break;
- case kTfLiteInt32:
- FillImpl<int32_t>(value, output);
- break;
- case kTfLiteInt8:
- FillImpl<int8_t>(value, output);
- break;
- default:
- MicroPrintf("Fill only currently supports float32 for input 1, got %d.",
- TfLiteTypeGetName(value->type));
- return kTfLiteError;
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_FILL() {
- return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
- }
- } // namespace tflite
|