| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- /* Copyright 2021 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/c/builtin_op_data.h"
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/micro_utils.h"
- namespace tflite {
- namespace {
- constexpr int kInputTensor = 0;
- constexpr int kInputPositions = 1;
- constexpr int kOutputTensor = 0;
- template <typename InputT, typename CoordsT = int32_t>
- TfLiteStatus Gather(const TfLiteGatherParams* params,
- const TfLiteEvalTensor* input,
- const TfLiteEvalTensor* coords, TfLiteEvalTensor* output) {
- const InputT* input_data = tflite::micro::GetTensorData<InputT>(input);
- const CoordsT* coords_data = tflite::micro::GetTensorData<CoordsT>(coords);
- InputT* output_data = tflite::micro::GetTensorData<InputT>(output);
- const TfLiteIntArray* input_dims = input->dims;
- const int input_dims_size = input_dims->size;
- int axis = params->axis;
- if (axis < 0) {
- axis += input_dims_size;
- }
- TFLITE_DCHECK_GE(axis, 0);
- TFLITE_DCHECK_LT(axis, input_dims_size);
- int batch_dims = params->batch_dims;
- // batch_dims should be in range: [-rank(coords), rank(coords)].
- // Negative batch_dims is added with rank of coords.
- const TfLiteIntArray* coords_dims = coords->dims;
- const int coords_dims_size = coords_dims->size;
- if (batch_dims < 0) {
- batch_dims += coords_dims_size;
- }
- TFLITE_DCHECK_GE(batch_dims, 0);
- TFLITE_DCHECK_LT(batch_dims, input_dims_size);
- TFLITE_DCHECK_LE(batch_dims, coords_dims_size);
- TFLITE_DCHECK_GE(axis, batch_dims);
- for (int i = 0; i < batch_dims; ++i) {
- TFLITE_DCHECK_EQ(input_dims->data[i], coords_dims->data[i]);
- }
- const int axis_size = input_dims->data[axis];
- int batch_size = 1;
- for (int i = 0; i < batch_dims; ++i) {
- batch_size *= input_dims->data[i];
- }
- int outer_size = 1;
- for (int i = batch_dims; i < axis; ++i) {
- outer_size *= input_dims->data[i];
- }
- int inner_size = 1;
- for (int i = axis + 1; i < input_dims_size; ++i) {
- inner_size *= input_dims->data[i];
- }
- int coord_size = 1;
- for (int i = batch_dims; i < coords_dims_size; ++i) {
- coord_size *= coords_dims->data[i];
- }
- for (int batch = 0; batch < batch_size; ++batch) {
- for (int outer = 0; outer < outer_size; ++outer) {
- for (int coord = 0; coord < coord_size; ++coord) {
- TFLITE_DCHECK_GE(coords_data[coord], 0);
- TFLITE_DCHECK_LT(coords_data[coord], axis_size);
- std::memcpy(output_data +
- (((batch * outer_size) + outer) * coord_size + coord) *
- inner_size,
- input_data + (((batch * outer_size) + outer) * axis_size +
- coords_data[batch * coord_size + coord]) *
- inner_size,
- sizeof(InputT) * inner_size);
- }
- }
- }
- return kTfLiteOk;
- }
- TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
- MicroContext* micro_context = GetMicroContext(context);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- const auto* params =
- reinterpret_cast<const TfLiteGatherParams*>(node->builtin_data);
- TfLiteTensor* input =
- micro_context->AllocateTempInputTensor(node, kInputTensor);
- TF_LITE_ENSURE(context, input != nullptr);
- TfLiteTensor* coords =
- micro_context->AllocateTempInputTensor(node, kInputPositions);
- TF_LITE_ENSURE(context, coords != nullptr);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- TF_LITE_ENSURE(context, output != nullptr);
- switch (coords->type) {
- case kTfLiteInt32:
- break;
- default:
- MicroPrintf("Positions of type '%s' are not supported by gather.",
- TfLiteTypeGetName(coords->type));
- return kTfLiteError;
- break;
- }
- // Assign to output the input type.
- output->type = input->type;
- // Check conditions for different types.
- switch (input->type) {
- case kTfLiteFloat32:
- case kTfLiteInt8:
- break;
- default:
- MicroPrintf("Type '%s' is not supported by gather.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- break;
- }
- int axis = params->axis;
- if (axis < 0) {
- axis += NumDimensions(input);
- }
- TF_LITE_ENSURE(context, 0 <= axis && axis < NumDimensions(input));
- int batch_dims = params->batch_dims;
- // batch_dims should be in range: [-rank(coords), rank(coords)].
- // Negative batch_dims is added with rank of coords.
- if (batch_dims < 0) {
- batch_dims += NumDimensions(coords);
- }
- TF_LITE_ENSURE(context, batch_dims <= axis);
- TF_LITE_ENSURE(context, 0 <= batch_dims && batch_dims < NumDimensions(input));
- TF_LITE_ENSURE(context, batch_dims <= NumDimensions(coords));
- for (int i = 0; i < batch_dims; ++i) {
- TF_LITE_ENSURE_EQ(context, input->dims->data[i], coords->dims->data[i]);
- }
- // GATHER updates the output tensor dimensions, but TfLiteTensor in the
- // MicroInterpreter is a temporary allocation. We must therefore relocate the
- // dims from the FlatBuffer to the persistant storage arena.
- TfLiteEvalTensor* output_eval =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- TF_LITE_ENSURE_OK(context, tflite::micro::CreateWritableTensorDimsWithCopy(
- context, output, output_eval));
- TfLiteIntArray* output_shape = output->dims;
- output_shape->size =
- NumDimensions(input) + NumDimensions(coords) - 1 - batch_dims;
- int output_index = 0;
- for (int i = 0; i < axis; ++i) {
- output_shape->data[output_index++] = input->dims->data[i];
- }
- for (int i = batch_dims; i < coords->dims->size; ++i) {
- output_shape->data[output_index++] = coords->dims->data[i];
- }
- for (int i = axis + 1; i < input->dims->size; ++i) {
- output_shape->data[output_index++] = input->dims->data[i];
- }
- micro_context->DeallocateTempTfLiteTensor(input);
- micro_context->DeallocateTempTfLiteTensor(coords);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
- const auto* params =
- reinterpret_cast<const TfLiteGatherParams*>(node->builtin_data);
- const TfLiteEvalTensor* input =
- tflite::micro::GetEvalInput(context, node, kInputTensor);
- const TfLiteEvalTensor* coords =
- tflite::micro::GetEvalInput(context, node, kInputPositions);
- TfLiteEvalTensor* output =
- tflite::micro::GetEvalOutput(context, node, kOutputTensor);
- if (coords->type == kTfLiteInt32) {
- switch (input->type) {
- case kTfLiteFloat32:
- return Gather<float, int32_t>(params, input, coords, output);
- break;
- case kTfLiteInt8:
- return Gather<int8_t, int32_t>(params, input, coords, output);
- break;
- default:
- MicroPrintf("Type '%s' is not supported by gather.",
- TfLiteTypeGetName(input->type));
- return kTfLiteError;
- break;
- }
- }
- return kTfLiteOk;
- }
- } // namespace
- TfLiteRegistration Register_GATHER() {
- return tflite::micro::RegisterOp(nullptr, Prepare, Eval);
- }
- } // namespace tflite
|