| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196 |
- /* Copyright 2022 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #include "tensorflow/lite/kernels/internal/reference/select.h"
- #include <stddef.h>
- #include <stdint.h>
- #include "tensorflow/lite/c/common.h"
- #include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
- #include "tensorflow/lite/kernels/kernel_util.h"
- #include "tensorflow/lite/micro/kernels/kernel_util.h"
- namespace tflite {
- constexpr int kInputTensorCondition = 0;
- constexpr int kInputTensorX = 1;
- constexpr int kInputTensorY = 2;
- constexpr int kOutputTensor = 0;
- struct OpData {
- bool requires_broadcast;
- // True if input condition is scalar or input condition has rank one and
- // matches the first dimension of other inputs.
- bool has_low_rank_input_condition;
- };
- void* SelectInit(TfLiteContext* context, const char* buffer, size_t length) {
- TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
- auto* data = static_cast<OpData*>(
- context->AllocatePersistentBuffer(context, sizeof(OpData)));
- data->requires_broadcast = false;
- data->has_low_rank_input_condition = false;
- return data;
- }
- TfLiteStatus CheckBroadcastShape(TfLiteContext* context,
- const TfLiteTensor* input1,
- const TfLiteTensor* input2,
- const TfLiteTensor* input3,
- const TfLiteIntArray* output_shape) {
- const int dims1 = NumDimensions(input1);
- const int dims2 = NumDimensions(input2);
- const int dims3 = NumDimensions(input3);
- const int out_dims = std::max(std::max(dims1, dims2), dims3);
- TF_LITE_ENSURE_EQ(context, out_dims, output_shape->size);
- for (int i = 0; i < out_dims; ++i) {
- const int d1 = i >= dims1 ? 1 : SizeOfDimension(input1, dims1 - i - 1);
- const int d2 = i >= dims2 ? 1 : SizeOfDimension(input2, dims2 - i - 1);
- const int d3 = i >= dims3 ? 1 : SizeOfDimension(input3, dims3 - i - 1);
- const int min_value = std::min(std::min(d1, d2), d3);
- int max_value = std::max(std::max(d1, d2), d3);
- // If one dimention is 0, others must be 0 or 1.
- if (min_value == 0) max_value = 0;
- if (!(d1 == 1 || d1 == max_value) || !(d2 == 1 || d2 == max_value) ||
- !(d3 == 1 || d3 == max_value)) {
- MicroPrintf("Given shapes are not broadcastable.");
- return kTfLiteError;
- }
- TF_LITE_ENSURE_EQ(context, output_shape->data[out_dims - i - 1], max_value);
- }
- return kTfLiteOk;
- }
- TfLiteStatus SelectPrepare(TfLiteContext* context, TfLiteNode* node) {
- OpData* data = reinterpret_cast<OpData*>(node->user_data);
- TF_LITE_ENSURE_EQ(context, NumInputs(node), 3);
- TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input_condition =
- micro_context->AllocateTempInputTensor(node, kInputTensorCondition);
- TfLiteTensor* input_x =
- micro_context->AllocateTempInputTensor(node, kInputTensorX);
- TfLiteTensor* input_y =
- micro_context->AllocateTempInputTensor(node, kInputTensorY);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- // Input must be bool.
- TF_LITE_ENSURE_TYPES_EQ(context, input_condition->type, kTfLiteBool);
- TF_LITE_ENSURE_TYPES_EQ(context, input_x->type, input_y->type);
- output->type = input_x->type;
- // Respect the original output shape when there are mixed shapes to represent
- // a scalar data.
- if (GetTensorShape(input_condition).FlatSize() == 1 &&
- GetTensorShape(input_x).FlatSize() == 1 &&
- GetTensorShape(input_y).FlatSize() == 1 &&
- GetTensorShape(output).FlatSize() == 1) {
- return kTfLiteOk;
- }
- bool same_shape = HaveSameShapes(input_condition, input_x) &&
- HaveSameShapes(input_x, input_y);
- if (!same_shape) {
- TF_LITE_ENSURE_OK(
- context, CheckBroadcastShape(context, input_condition, input_x, input_y,
- output->dims));
- data->requires_broadcast = true;
- }
- micro_context->DeallocateTempTfLiteTensor(input_condition);
- micro_context->DeallocateTempTfLiteTensor(input_x);
- micro_context->DeallocateTempTfLiteTensor(input_y);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- TfLiteStatus SelectEval(TfLiteContext* context, TfLiteNode* node) {
- OpData* data = static_cast<OpData*>(node->user_data);
- MicroContext* micro_context = GetMicroContext(context);
- TfLiteTensor* input_condition =
- micro_context->AllocateTempInputTensor(node, kInputTensorCondition);
- TfLiteTensor* input_x =
- micro_context->AllocateTempInputTensor(node, kInputTensorX);
- TfLiteTensor* input_y =
- micro_context->AllocateTempInputTensor(node, kInputTensorY);
- TfLiteTensor* output =
- micro_context->AllocateTempOutputTensor(node, kOutputTensor);
- #define TF_LITE_SELECT(type, op) \
- reference_ops::op(GetTensorShape(input_condition), \
- GetTensorData<bool>(input_condition), \
- GetTensorShape(input_x), GetTensorData<type>(input_x), \
- GetTensorShape(input_y), GetTensorData<type>(input_y), \
- GetTensorShape(output), GetTensorData<type>(output));
- #define TF_LITE_SWITCH(type, op) \
- switch (type) { \
- case kTfLiteFloat32: \
- TF_LITE_SELECT(float, op); \
- break; \
- case kTfLiteInt8: \
- TF_LITE_SELECT(int8_t, op); \
- break; \
- case kTfLiteInt16: \
- TF_LITE_SELECT(int16_t, op); \
- break; \
- default: \
- MicroPrintf("Does not support type other than %s, but got %s", \
- "int8|int16|float32", TfLiteTypeGetName(type)); \
- return kTfLiteError; \
- }
- if (data->has_low_rank_input_condition) {
- MicroPrintf("Not yet implemented.");
- return kTfLiteError;
- } else if (data->requires_broadcast) {
- TF_LITE_SWITCH(input_x->type, BroadcastSelect5DSlow);
- } else {
- TF_LITE_SWITCH(input_x->type, Select);
- }
- #undef TF_LITE_SELECT
- #undef TF_LITE_SWITCH
- micro_context->DeallocateTempTfLiteTensor(input_condition);
- micro_context->DeallocateTempTfLiteTensor(input_x);
- micro_context->DeallocateTempTfLiteTensor(input_y);
- micro_context->DeallocateTempTfLiteTensor(output);
- return kTfLiteOk;
- }
- // SelectV2 op selects values of 'x' if the corresponding value of 'condition'
- // is true or the value of 'y' if false. There are valid condition input sizes:
- //
- // 1. Either the same shape (in which case the select is elementwise), or
- // 2. Broadcastable shapes between 'condition', 'x' and 'y'.
- TfLiteRegistration Register_SELECT_V2() {
- return tflite::micro::RegisterOp(tflite::SelectInit, tflite::SelectPrepare,
- tflite::SelectEval);
- }
- } // namespace tflite
|