cam_hal.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. // Copyright 2010-2020 Espressif Systems (Shanghai) PTE LTD
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // http://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #include <stdio.h>
  15. #include <string.h>
  16. #include "esp_heap_caps.h"
  17. #include "ll_cam.h"
  18. #include "cam_hal.h"
  19. static const char *TAG = "cam_hal";
  20. static cam_obj_t *cam_obj = NULL;
  21. static const uint32_t JPEG_SOI_MARKER = 0xFFD8FF; // written in little-endian for esp32
  22. static const uint16_t JPEG_EOI_MARKER = 0xD9FF; // written in little-endian for esp32
  23. static int cam_verify_jpeg_soi(const uint8_t *inbuf, uint32_t length)
  24. {
  25. uint32_t sig = *((uint32_t *)inbuf) & 0xFFFFFF;
  26. if(sig != JPEG_SOI_MARKER) {
  27. for (uint32_t i = 0; i < length; i++) {
  28. sig = *((uint32_t *)(&inbuf[i])) & 0xFFFFFF;
  29. if (sig == JPEG_SOI_MARKER) {
  30. ESP_LOGW(TAG, "SOI: %d", i);
  31. return i;
  32. }
  33. }
  34. ESP_LOGW(TAG, "NO-SOI");
  35. return -1;
  36. }
  37. return 0;
  38. }
  39. static int cam_verify_jpeg_eoi(const uint8_t *inbuf, uint32_t length)
  40. {
  41. int offset = -1;
  42. uint8_t *dptr = (uint8_t *)inbuf + length - 2;
  43. while (dptr > inbuf) {
  44. uint16_t sig = *((uint16_t *)dptr);
  45. if (JPEG_EOI_MARKER == sig) {
  46. offset = dptr - inbuf;
  47. //ESP_LOGW(TAG, "EOI: %d", length - (offset + 2));
  48. return offset;
  49. }
  50. dptr--;
  51. }
  52. return -1;
  53. }
  54. static bool cam_get_next_frame(int * frame_pos)
  55. {
  56. if(!cam_obj->frames[*frame_pos].en){
  57. for (int x = 0; x < cam_obj->frame_cnt; x++) {
  58. if (cam_obj->frames[x].en) {
  59. *frame_pos = x;
  60. return true;
  61. }
  62. }
  63. } else {
  64. return true;
  65. }
  66. return false;
  67. }
  68. static bool cam_start_frame(int * frame_pos)
  69. {
  70. if (cam_get_next_frame(frame_pos)) {
  71. if(ll_cam_start(cam_obj, *frame_pos)){
  72. // Vsync the frame manually
  73. ll_cam_do_vsync(cam_obj);
  74. uint64_t us = (uint64_t)esp_timer_get_time();
  75. cam_obj->frames[*frame_pos].fb.timestamp.tv_sec = us / 1000000UL;
  76. cam_obj->frames[*frame_pos].fb.timestamp.tv_usec = us % 1000000UL;
  77. return true;
  78. }
  79. }
  80. return false;
  81. }
  82. void IRAM_ATTR ll_cam_send_event(cam_obj_t *cam, cam_event_t cam_event, BaseType_t * HPTaskAwoken)
  83. {
  84. if (xQueueSendFromISR(cam->event_queue, (void *)&cam_event, HPTaskAwoken) != pdTRUE) {
  85. ll_cam_stop(cam);
  86. cam->state = CAM_STATE_IDLE;
  87. ESP_EARLY_LOGE(TAG, "EV-%s-OVF", cam_event==CAM_IN_SUC_EOF_EVENT ? "EOF" : "VSYNC");
  88. }
  89. }
  90. //Copy fram from DMA dma_buffer to fram dma_buffer
  91. static void cam_task(void *arg)
  92. {
  93. int cnt = 0;
  94. int frame_pos = 0;
  95. cam_obj->state = CAM_STATE_IDLE;
  96. cam_event_t cam_event = 0;
  97. xQueueReset(cam_obj->event_queue);
  98. while (1) {
  99. xQueueReceive(cam_obj->event_queue, (void *)&cam_event, portMAX_DELAY);
  100. DBG_PIN_SET(1);
  101. switch (cam_obj->state) {
  102. case CAM_STATE_IDLE: {
  103. if (cam_event == CAM_VSYNC_EVENT) {
  104. //DBG_PIN_SET(1);
  105. if(cam_start_frame(&frame_pos)){
  106. cam_obj->frames[frame_pos].fb.len = 0;
  107. cam_obj->state = CAM_STATE_READ_BUF;
  108. }
  109. cnt = 0;
  110. }
  111. }
  112. break;
  113. case CAM_STATE_READ_BUF: {
  114. camera_fb_t * frame_buffer_event = &cam_obj->frames[frame_pos].fb;
  115. size_t pixels_per_dma = (cam_obj->dma_half_buffer_size * cam_obj->fb_bytes_per_pixel) / (cam_obj->dma_bytes_per_item * cam_obj->in_bytes_per_pixel);
  116. if (cam_event == CAM_IN_SUC_EOF_EVENT) {
  117. if(!cam_obj->psram_mode){
  118. if (cam_obj->fb_size < (frame_buffer_event->len + pixels_per_dma)) {
  119. ESP_LOGW(TAG, "FB-OVF");
  120. ll_cam_stop(cam_obj);
  121. DBG_PIN_SET(0);
  122. continue;
  123. }
  124. frame_buffer_event->len += ll_cam_memcpy(cam_obj,
  125. &frame_buffer_event->buf[frame_buffer_event->len],
  126. &cam_obj->dma_buffer[(cnt % cam_obj->dma_half_buffer_cnt) * cam_obj->dma_half_buffer_size],
  127. cam_obj->dma_half_buffer_size);
  128. }
  129. //Check for JPEG SOI in the first buffer. stop if not found
  130. if (cam_obj->jpeg_mode && cnt == 0 && cam_verify_jpeg_soi(frame_buffer_event->buf, frame_buffer_event->len) != 0) {
  131. ll_cam_stop(cam_obj);
  132. cam_obj->state = CAM_STATE_IDLE;
  133. }
  134. cnt++;
  135. } else if (cam_event == CAM_VSYNC_EVENT) {
  136. //DBG_PIN_SET(1);
  137. ll_cam_stop(cam_obj);
  138. if (cnt || !cam_obj->jpeg_mode || cam_obj->psram_mode) {
  139. if (cam_obj->jpeg_mode) {
  140. if (!cam_obj->psram_mode) {
  141. if (cam_obj->fb_size < (frame_buffer_event->len + pixels_per_dma)) {
  142. ESP_LOGW(TAG, "FB-OVF");
  143. cnt--;
  144. } else {
  145. frame_buffer_event->len += ll_cam_memcpy(cam_obj,
  146. &frame_buffer_event->buf[frame_buffer_event->len],
  147. &cam_obj->dma_buffer[(cnt % cam_obj->dma_half_buffer_cnt) * cam_obj->dma_half_buffer_size],
  148. cam_obj->dma_half_buffer_size);
  149. }
  150. }
  151. cnt++;
  152. }
  153. cam_obj->frames[frame_pos].en = 0;
  154. if (cam_obj->psram_mode) {
  155. if (cam_obj->jpeg_mode) {
  156. frame_buffer_event->len = cnt * cam_obj->dma_half_buffer_size;
  157. } else {
  158. frame_buffer_event->len = cam_obj->recv_size;
  159. }
  160. } else if (!cam_obj->jpeg_mode) {
  161. if (frame_buffer_event->len != cam_obj->fb_size) {
  162. cam_obj->frames[frame_pos].en = 1;
  163. ESP_LOGE(TAG, "FB-SIZE: %u != %u", frame_buffer_event->len, cam_obj->fb_size);
  164. }
  165. }
  166. //send frame
  167. if(!cam_obj->frames[frame_pos].en && xQueueSend(cam_obj->frame_buffer_queue, (void *)&frame_buffer_event, 0) != pdTRUE) {
  168. //pop frame buffer from the queue
  169. camera_fb_t * fb2 = NULL;
  170. if(xQueueReceive(cam_obj->frame_buffer_queue, &fb2, 0) == pdTRUE) {
  171. //push the new frame to the end of the queue
  172. if (xQueueSend(cam_obj->frame_buffer_queue, (void *)&frame_buffer_event, 0) != pdTRUE) {
  173. cam_obj->frames[frame_pos].en = 1;
  174. ESP_LOGE(TAG, "FBQ-SND");
  175. }
  176. //free the popped buffer
  177. cam_give(fb2);
  178. } else {
  179. //queue is full and we could not pop a frame from it
  180. cam_obj->frames[frame_pos].en = 1;
  181. ESP_LOGE(TAG, "FBQ-RCV");
  182. }
  183. }
  184. }
  185. if(!cam_start_frame(&frame_pos)){
  186. cam_obj->state = CAM_STATE_IDLE;
  187. } else {
  188. cam_obj->frames[frame_pos].fb.len = 0;
  189. }
  190. cnt = 0;
  191. }
  192. }
  193. break;
  194. }
  195. DBG_PIN_SET(0);
  196. }
  197. }
  198. static lldesc_t * allocate_dma_descriptors(uint32_t count, uint16_t size, uint8_t * buffer)
  199. {
  200. lldesc_t *dma = (lldesc_t *)heap_caps_malloc(count * sizeof(lldesc_t), MALLOC_CAP_DMA);
  201. if (dma == NULL) {
  202. return dma;
  203. }
  204. for (int x = 0; x < count; x++) {
  205. dma[x].size = size;
  206. dma[x].length = 0;
  207. dma[x].sosf = 0;
  208. dma[x].eof = 0;
  209. dma[x].owner = 1;
  210. dma[x].buf = (buffer + size * x);
  211. dma[x].empty = (uint32_t)&dma[(x + 1) % count];
  212. }
  213. return dma;
  214. }
  215. static esp_err_t cam_dma_config(const camera_config_t *config)
  216. {
  217. bool ret = ll_cam_dma_sizes(cam_obj);
  218. if (0 == ret) {
  219. return ESP_FAIL;
  220. }
  221. cam_obj->dma_node_cnt = (cam_obj->dma_buffer_size) / cam_obj->dma_node_buffer_size; // Number of DMA nodes
  222. cam_obj->frame_copy_cnt = cam_obj->recv_size / cam_obj->dma_half_buffer_size; // Number of interrupted copies, ping-pong copy
  223. ESP_LOGI(TAG, "buffer_size: %d, half_buffer_size: %d, node_buffer_size: %d, node_cnt: %d, total_cnt: %d",
  224. cam_obj->dma_buffer_size, cam_obj->dma_half_buffer_size, cam_obj->dma_node_buffer_size, cam_obj->dma_node_cnt, cam_obj->frame_copy_cnt);
  225. cam_obj->dma_buffer = NULL;
  226. cam_obj->dma = NULL;
  227. cam_obj->frames = (cam_frame_t *)heap_caps_calloc(1, cam_obj->frame_cnt * sizeof(cam_frame_t), MALLOC_CAP_DEFAULT);
  228. CAM_CHECK(cam_obj->frames != NULL, "frames malloc failed", ESP_FAIL);
  229. uint8_t dma_align = 0;
  230. size_t fb_size = cam_obj->fb_size;
  231. if (cam_obj->psram_mode) {
  232. dma_align = ll_cam_get_dma_align(cam_obj);
  233. if (cam_obj->fb_size < cam_obj->recv_size) {
  234. fb_size = cam_obj->recv_size;
  235. }
  236. }
  237. /* Allocate memory for frame buffer */
  238. size_t alloc_size = fb_size * sizeof(uint8_t) + dma_align;
  239. uint32_t _caps = MALLOC_CAP_8BIT;
  240. if (CAMERA_FB_IN_DRAM == config->fb_location) {
  241. _caps |= MALLOC_CAP_INTERNAL;
  242. } else {
  243. _caps |= MALLOC_CAP_SPIRAM;
  244. }
  245. for (int x = 0; x < cam_obj->frame_cnt; x++) {
  246. cam_obj->frames[x].dma = NULL;
  247. cam_obj->frames[x].fb_offset = 0;
  248. cam_obj->frames[x].en = 0;
  249. ESP_LOGI(TAG, "Allocating %d Byte frame buffer in %s", alloc_size, _caps & MALLOC_CAP_SPIRAM ? "PSRAM" : "OnBoard RAM");
  250. cam_obj->frames[x].fb.buf = (uint8_t *)heap_caps_malloc(alloc_size, _caps);
  251. CAM_CHECK(cam_obj->frames[x].fb.buf != NULL, "frame buffer malloc failed", ESP_FAIL);
  252. if (cam_obj->psram_mode) {
  253. //align PSRAM buffer. TODO: save the offset so proper address can be freed later
  254. cam_obj->frames[x].fb_offset = dma_align - ((uint32_t)cam_obj->frames[x].fb.buf & (dma_align - 1));
  255. cam_obj->frames[x].fb.buf += cam_obj->frames[x].fb_offset;
  256. ESP_LOGI(TAG, "Frame[%d]: Offset: %u, Addr: 0x%08X", x, cam_obj->frames[x].fb_offset, (uint32_t)cam_obj->frames[x].fb.buf);
  257. cam_obj->frames[x].dma = allocate_dma_descriptors(cam_obj->dma_node_cnt, cam_obj->dma_node_buffer_size, cam_obj->frames[x].fb.buf);
  258. CAM_CHECK(cam_obj->frames[x].dma != NULL, "frame dma malloc failed", ESP_FAIL);
  259. }
  260. cam_obj->frames[x].en = 1;
  261. }
  262. if (!cam_obj->psram_mode) {
  263. cam_obj->dma_buffer = (uint8_t *)heap_caps_malloc(cam_obj->dma_buffer_size * sizeof(uint8_t), MALLOC_CAP_DMA);
  264. if(NULL == cam_obj->dma_buffer) {
  265. ESP_LOGE(TAG,"%s(%d): DMA buffer %d Byte malloc failed, the current largest free block:%d Byte", __FUNCTION__, __LINE__,
  266. cam_obj->dma_buffer_size, heap_caps_get_largest_free_block(MALLOC_CAP_DMA));
  267. return ESP_FAIL;
  268. }
  269. cam_obj->dma = allocate_dma_descriptors(cam_obj->dma_node_cnt, cam_obj->dma_node_buffer_size, cam_obj->dma_buffer);
  270. CAM_CHECK(cam_obj->dma != NULL, "dma malloc failed", ESP_FAIL);
  271. }
  272. return ESP_OK;
  273. }
  274. esp_err_t cam_init(const camera_config_t *config)
  275. {
  276. CAM_CHECK(NULL != config, "config pointer is invalid", ESP_ERR_INVALID_ARG);
  277. esp_err_t ret = ESP_OK;
  278. cam_obj = (cam_obj_t *)heap_caps_calloc(1, sizeof(cam_obj_t), MALLOC_CAP_DMA);
  279. CAM_CHECK(NULL != cam_obj, "lcd_cam object malloc error", ESP_ERR_NO_MEM);
  280. cam_obj->swap_data = 0;
  281. cam_obj->vsync_pin = config->pin_vsync;
  282. cam_obj->vsync_invert = true;
  283. ll_cam_set_pin(cam_obj, config);
  284. ret = ll_cam_config(cam_obj, config);
  285. CAM_CHECK_GOTO(ret == ESP_OK, "ll_cam initialize failed", err);
  286. #if CAMERA_DBG_PIN_ENABLE
  287. PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[DBG_PIN_NUM], PIN_FUNC_GPIO);
  288. gpio_set_direction(DBG_PIN_NUM, GPIO_MODE_OUTPUT);
  289. gpio_set_pull_mode(DBG_PIN_NUM, GPIO_FLOATING);
  290. #endif
  291. ESP_LOGI(TAG, "cam init ok");
  292. return ESP_OK;
  293. err:
  294. free(cam_obj);
  295. cam_obj = NULL;
  296. return ESP_FAIL;
  297. }
  298. esp_err_t cam_config(const camera_config_t *config, framesize_t frame_size, uint16_t sensor_pid)
  299. {
  300. CAM_CHECK(NULL != config, "config pointer is invalid", ESP_ERR_INVALID_ARG);
  301. esp_err_t ret = ESP_OK;
  302. ret = ll_cam_set_sample_mode(cam_obj, (pixformat_t)config->pixel_format, config->xclk_freq_hz, sensor_pid);
  303. cam_obj->jpeg_mode = config->pixel_format == PIXFORMAT_JPEG;
  304. #if CONFIG_IDF_TARGET_ESP32
  305. cam_obj->psram_mode = false;
  306. #else
  307. cam_obj->psram_mode = (config->xclk_freq_hz == 16000000);
  308. #endif
  309. cam_obj->frame_cnt = config->fb_count;
  310. cam_obj->width = resolution[frame_size].width;
  311. cam_obj->height = resolution[frame_size].height;
  312. if(cam_obj->jpeg_mode){
  313. cam_obj->recv_size = cam_obj->width * cam_obj->height / 5;
  314. cam_obj->fb_size = cam_obj->recv_size;
  315. } else {
  316. cam_obj->recv_size = cam_obj->width * cam_obj->height * cam_obj->in_bytes_per_pixel;
  317. cam_obj->fb_size = cam_obj->width * cam_obj->height * cam_obj->fb_bytes_per_pixel;
  318. }
  319. ret = cam_dma_config(config);
  320. CAM_CHECK_GOTO(ret == ESP_OK, "cam_dma_config failed", err);
  321. cam_obj->event_queue = xQueueCreate(cam_obj->dma_half_buffer_cnt - 1, sizeof(cam_event_t));
  322. CAM_CHECK_GOTO(cam_obj->event_queue != NULL, "event_queue create failed", err);
  323. size_t frame_buffer_queue_len = cam_obj->frame_cnt;
  324. if (config->grab_mode == CAMERA_GRAB_LATEST && cam_obj->frame_cnt > 1) {
  325. frame_buffer_queue_len = cam_obj->frame_cnt - 1;
  326. }
  327. cam_obj->frame_buffer_queue = xQueueCreate(frame_buffer_queue_len, sizeof(camera_fb_t*));
  328. CAM_CHECK_GOTO(cam_obj->frame_buffer_queue != NULL, "frame_buffer_queue create failed", err);
  329. ret = ll_cam_init_isr(cam_obj);
  330. CAM_CHECK_GOTO(ret == ESP_OK, "cam intr alloc failed", err);
  331. #if CONFIG_CAMERA_CORE0
  332. xTaskCreatePinnedToCore(cam_task, "cam_task", 2048, NULL, configMAX_PRIORITIES - 2, &cam_obj->task_handle, 0);
  333. #elif CONFIG_CAMERA_CORE1
  334. xTaskCreatePinnedToCore(cam_task, "cam_task", 2048, NULL, configMAX_PRIORITIES - 2, &cam_obj->task_handle, 1);
  335. #else
  336. xTaskCreate(cam_task, "cam_task", 2048, NULL, configMAX_PRIORITIES - 2, &cam_obj->task_handle);
  337. #endif
  338. ESP_LOGI(TAG, "cam config ok");
  339. return ESP_OK;
  340. err:
  341. cam_deinit();
  342. return ESP_FAIL;
  343. }
  344. esp_err_t cam_deinit(void)
  345. {
  346. if (!cam_obj) {
  347. return ESP_FAIL;
  348. }
  349. cam_stop();
  350. if (cam_obj->task_handle) {
  351. vTaskDelete(cam_obj->task_handle);
  352. }
  353. if (cam_obj->event_queue) {
  354. vQueueDelete(cam_obj->event_queue);
  355. }
  356. if (cam_obj->frame_buffer_queue) {
  357. vQueueDelete(cam_obj->frame_buffer_queue);
  358. }
  359. if (cam_obj->dma) {
  360. free(cam_obj->dma);
  361. }
  362. if (cam_obj->dma_buffer) {
  363. free(cam_obj->dma_buffer);
  364. }
  365. if (cam_obj->frames) {
  366. for (int x = 0; x < cam_obj->frame_cnt; x++) {
  367. free(cam_obj->frames[x].fb.buf - cam_obj->frames[x].fb_offset);
  368. if (cam_obj->frames[x].dma) {
  369. free(cam_obj->frames[x].dma);
  370. }
  371. }
  372. free(cam_obj->frames);
  373. }
  374. ll_cam_deinit(cam_obj);
  375. free(cam_obj);
  376. cam_obj = NULL;
  377. return ESP_OK;
  378. }
  379. void cam_stop(void)
  380. {
  381. ll_cam_vsync_intr_enable(cam_obj, false);
  382. ll_cam_stop(cam_obj);
  383. }
  384. void cam_start(void)
  385. {
  386. ll_cam_vsync_intr_enable(cam_obj, true);
  387. }
  388. camera_fb_t *cam_take(TickType_t timeout)
  389. {
  390. camera_fb_t *dma_buffer = NULL;
  391. TickType_t start = xTaskGetTickCount();
  392. xQueueReceive(cam_obj->frame_buffer_queue, (void *)&dma_buffer, timeout);
  393. if (dma_buffer) {
  394. if(cam_obj->jpeg_mode){
  395. // find the end marker for JPEG. Data after that can be discarded
  396. int offset_e = cam_verify_jpeg_eoi(dma_buffer->buf, dma_buffer->len);
  397. if (offset_e >= 0) {
  398. // adjust buffer length
  399. dma_buffer->len = offset_e + sizeof(JPEG_EOI_MARKER);
  400. return dma_buffer;
  401. } else {
  402. ESP_LOGW(TAG, "NO-EOI");
  403. cam_give(dma_buffer);
  404. return cam_take(timeout - (xTaskGetTickCount() - start));//recurse!!!!
  405. }
  406. } else if(cam_obj->psram_mode && cam_obj->in_bytes_per_pixel != cam_obj->fb_bytes_per_pixel){
  407. //currently this is used only for YUV to GRAYSCALE
  408. dma_buffer->len = ll_cam_memcpy(cam_obj, dma_buffer->buf, dma_buffer->buf, dma_buffer->len);
  409. }
  410. return dma_buffer;
  411. } else {
  412. ESP_LOGW(TAG, "Failed to get the frame on time!");
  413. }
  414. return NULL;
  415. }
  416. void cam_give(camera_fb_t *dma_buffer)
  417. {
  418. for (int x = 0; x < cam_obj->frame_cnt; x++) {
  419. if (&cam_obj->frames[x].fb == dma_buffer) {
  420. cam_obj->frames[x].en = 1;
  421. break;
  422. }
  423. }
  424. }