| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- /* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
- Licensed under the Apache License, Version 2.0 (the "License");
- you may not use this file except in compliance with the License.
- You may obtain a copy of the License at
- http://www.apache.org/licenses/LICENSE-2.0
- Unless required by applicable law or agreed to in writing, software
- distributed under the License is distributed on an "AS IS" BASIS,
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- See the License for the specific language governing permissions and
- limitations under the License.
- ==============================================================================*/
- #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
- #define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
- #include <algorithm>
- #include <limits>
- #include <vector>
- #include "tensorflow/lite/kernels/internal/common.h"
- #include "tensorflow/lite/kernels/internal/compatibility.h"
- #include "tensorflow/lite/kernels/internal/cppmath.h"
- #include "tensorflow/lite/kernels/internal/types.h"
- namespace tflite {
- namespace reference_ops {
- template <typename InputT, typename OutputT>
- inline void AffineQuantize(const tflite::QuantizationParams& op_params,
- const RuntimeShape& input_shape,
- const InputT* input_data,
- const RuntimeShape& output_shape,
- OutputT* output_data) {
- const int32_t zero_point = op_params.zero_point;
- const double scale = op_params.scale;
- const int flat_size = MatchingFlatSize(input_shape, output_shape);
- static constexpr int32_t min_val = std::numeric_limits<OutputT>::min();
- static constexpr int32_t max_val = std::numeric_limits<OutputT>::max();
- for (int i = 0; i < flat_size; i++) {
- const InputT val = input_data[i];
- int32_t unclamped =
- static_cast<int32_t>(TfLiteRound(val / static_cast<float>(scale))) +
- zero_point;
- int32_t clamped = std::min(std::max(unclamped, min_val), max_val);
- output_data[i] = clamped;
- }
- }
- // Quantizes per-channel.
- template <typename InputT, typename OutputT>
- inline void PerChannelQuantize(
- const tflite::PerChannelQuantizationParams& op_params,
- const RuntimeShape& input_shape, const InputT* input_data,
- const RuntimeShape& output_shape, OutputT* output_data) {
- // Ensure flat size is same.
- MatchingFlatSize(input_shape, output_shape);
- const int32_t* zero_point = op_params.zero_point;
- const float* scale = op_params.scale;
- const int32_t quantized_dimension = op_params.quantized_dimension;
- const int32_t num_dims = input_shape.DimensionsCount();
- const int32_t* dims_data = input_shape.DimsData();
- std::vector<int> current_dim(num_dims, 0);
- static constexpr int32_t min_val = std::numeric_limits<OutputT>::min();
- static constexpr int32_t max_val = std::numeric_limits<OutputT>::max();
- do {
- size_t offset =
- ReducedOutputOffset(num_dims, reinterpret_cast<const int*>(dims_data),
- current_dim.data(), 0, nullptr);
- const InputT val = input_data[offset];
- const int channel = current_dim[quantized_dimension];
- int32_t unclamped = static_cast<int32_t>(TfLiteRound(
- val / static_cast<float>(scale[channel]))) +
- zero_point[channel];
- int32_t clamped = std::min(std::max(unclamped, min_val), max_val);
- output_data[offset] = static_cast<OutputT>(clamped);
- } while (NextIndex(num_dims, reinterpret_cast<const int*>(dims_data),
- current_dim.data()));
- }
- } // namespace reference_ops
- } // namespace tflite
- #endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_QUANTIZE_H_
|