sdmmc_cmd_mh.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. /*
  2. * SPDX-FileCopyrightText: 2015-2021 Espressif Systems (Shanghai) CO LTD
  3. *
  4. * SPDX-License-Identifier: Apache-2.0
  5. */
  6. #include "sdmmc_common_mh.h"
  7. int FF_CAN_TRIM = 0;
  8. static const char* TAG = "sdmmc_cmd";
  9. esp_err_t sdmmc_send_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  10. {
  11. if (card->host.command_timeout_ms != 0) {
  12. cmd->timeout_ms = card->host.command_timeout_ms;
  13. } else if (cmd->timeout_ms == 0) {
  14. cmd->timeout_ms = SDMMC_DEFAULT_CMD_TIMEOUT_MS;
  15. }
  16. int slot = card->host.slot;
  17. ESP_LOGV(TAG, "sending cmd slot=%d op=%d arg=%x flags=%x data=%p blklen=%d datalen=%d timeout=%d",
  18. slot, cmd->opcode, cmd->arg, cmd->flags, cmd->data, cmd->blklen, cmd->datalen, cmd->timeout_ms);
  19. esp_err_t err = (*card->host.do_transaction)(slot, cmd);
  20. if (err != 0) {
  21. ESP_LOGD(TAG, "cmd=%d, sdmmc_req_run returned 0x%x", cmd->opcode, err);
  22. return err;
  23. }
  24. int state = MMC_R1_CURRENT_STATE(cmd->response);
  25. ESP_LOGV(TAG, "cmd response %08x %08x %08x %08x err=0x%x state=%d",
  26. cmd->response[0],
  27. cmd->response[1],
  28. cmd->response[2],
  29. cmd->response[3],
  30. cmd->error,
  31. state);
  32. return cmd->error;
  33. }
  34. esp_err_t sdmmc_send_app_cmd(sdmmc_card_t* card, sdmmc_command_t* cmd)
  35. {
  36. sdmmc_command_t app_cmd = {
  37. .opcode = MMC_APP_CMD,
  38. .flags = SCF_CMD_AC | SCF_RSP_R1,
  39. .arg = MMC_ARG_RCA(card->rca),
  40. };
  41. esp_err_t err = sdmmc_send_cmd(card, &app_cmd);
  42. if (err != ESP_OK) {
  43. return err;
  44. }
  45. // Check APP_CMD status bit (only in SD mode)
  46. if (!host_is_spi(card) && !(MMC_R1(app_cmd.response) & MMC_R1_APP_CMD)) {
  47. ESP_LOGW(TAG, "card doesn't support APP_CMD");
  48. return ESP_ERR_NOT_SUPPORTED;
  49. }
  50. return sdmmc_send_cmd(card, cmd);
  51. }
  52. esp_err_t sdmmc_send_cmd_go_idle_state(sdmmc_card_t* card)
  53. {
  54. sdmmc_command_t cmd = {
  55. .opcode = MMC_GO_IDLE_STATE,
  56. .flags = SCF_CMD_BC | SCF_RSP_R0,
  57. };
  58. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  59. if (host_is_spi(card)) {
  60. /* To enter SPI mode, CMD0 needs to be sent twice (see figure 4-1 in
  61. * SD Simplified spec v4.10). Some cards enter SD mode on first CMD0,
  62. * so don't expect the above command to succeed.
  63. * SCF_RSP_R1 flag below tells the lower layer to expect correct R1
  64. * response (in SPI mode).
  65. */
  66. (void) err;
  67. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  68. cmd.flags |= SCF_RSP_R1;
  69. err = sdmmc_send_cmd(card, &cmd);
  70. }
  71. if (err == ESP_OK) {
  72. vTaskDelay(SDMMC_GO_IDLE_DELAY_MS / portTICK_PERIOD_MS);
  73. }
  74. return err;
  75. }
  76. esp_err_t sdmmc_send_cmd_send_if_cond(sdmmc_card_t* card, uint32_t ocr)
  77. {
  78. const uint8_t pattern = 0xaa; /* any pattern will do here */
  79. sdmmc_command_t cmd = {
  80. .opcode = SD_SEND_IF_COND,
  81. .arg = (((ocr & SD_OCR_VOL_MASK) != 0) << 8) | pattern,
  82. .flags = SCF_CMD_BCR | SCF_RSP_R7,
  83. };
  84. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  85. if (err != ESP_OK) {
  86. return err;
  87. }
  88. uint8_t response = cmd.response[0] & 0xff;
  89. if (response != pattern) {
  90. ESP_LOGD(TAG, "%s: received=0x%x expected=0x%x", __func__, response, pattern);
  91. return ESP_ERR_INVALID_RESPONSE;
  92. }
  93. return ESP_OK;
  94. }
  95. esp_err_t sdmmc_send_cmd_send_op_cond(sdmmc_card_t* card, uint32_t ocr, uint32_t *ocrp)
  96. {
  97. esp_err_t err;
  98. sdmmc_command_t cmd = {
  99. .arg = ocr,
  100. .flags = SCF_CMD_BCR | SCF_RSP_R3,
  101. .opcode = SD_APP_OP_COND
  102. };
  103. int nretries = SDMMC_SEND_OP_COND_MAX_RETRIES;
  104. int err_cnt = SDMMC_SEND_OP_COND_MAX_ERRORS;
  105. for (; nretries != 0; --nretries) {
  106. bzero(&cmd, sizeof cmd);
  107. cmd.arg = ocr;
  108. cmd.flags = SCF_CMD_BCR | SCF_RSP_R3;
  109. if (!card->is_mmc) { /* SD mode */
  110. cmd.opcode = SD_APP_OP_COND;
  111. err = sdmmc_send_app_cmd(card, &cmd);
  112. } else { /* MMC mode */
  113. cmd.arg &= ~MMC_OCR_ACCESS_MODE_MASK;
  114. cmd.arg |= MMC_OCR_SECTOR_MODE;
  115. cmd.opcode = MMC_SEND_OP_COND;
  116. err = sdmmc_send_cmd(card, &cmd);
  117. }
  118. if (err != ESP_OK) {
  119. if (--err_cnt == 0) {
  120. ESP_LOGD(TAG, "%s: sdmmc_send_app_cmd err=0x%x", __func__, err);
  121. return err;
  122. } else {
  123. ESP_LOGV(TAG, "%s: ignoring err=0x%x", __func__, err);
  124. continue;
  125. }
  126. }
  127. // In SD protocol, card sets MEM_READY bit in OCR when it is ready.
  128. // In SPI protocol, card clears IDLE_STATE bit in R1 response.
  129. if (!host_is_spi(card)) {
  130. if ((MMC_R3(cmd.response) & MMC_OCR_MEM_READY) ||
  131. ocr == 0) {
  132. break;
  133. }
  134. } else {
  135. if ((SD_SPI_R1(cmd.response) & SD_SPI_R1_IDLE_STATE) == 0) {
  136. break;
  137. }
  138. }
  139. vTaskDelay(10 / portTICK_PERIOD_MS);
  140. }
  141. if (nretries == 0) {
  142. return ESP_ERR_TIMEOUT;
  143. }
  144. if (ocrp) {
  145. *ocrp = MMC_R3(cmd.response);
  146. }
  147. return ESP_OK;
  148. }
  149. esp_err_t sdmmc_send_cmd_read_ocr(sdmmc_card_t *card, uint32_t *ocrp)
  150. {
  151. assert(ocrp);
  152. sdmmc_command_t cmd = {
  153. .opcode = SD_READ_OCR,
  154. .flags = SCF_CMD_BCR | SCF_RSP_R2
  155. };
  156. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  157. if (err != ESP_OK) {
  158. return err;
  159. }
  160. *ocrp = SD_SPI_R3(cmd.response);
  161. return ESP_OK;
  162. }
  163. esp_err_t sdmmc_send_cmd_all_send_cid(sdmmc_card_t* card, sdmmc_response_t* out_raw_cid)
  164. {
  165. assert(out_raw_cid);
  166. sdmmc_command_t cmd = {
  167. .opcode = MMC_ALL_SEND_CID,
  168. .flags = SCF_CMD_BCR | SCF_RSP_R2
  169. };
  170. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  171. if (err != ESP_OK) {
  172. return err;
  173. }
  174. memcpy(out_raw_cid, &cmd.response, sizeof(sdmmc_response_t));
  175. return ESP_OK;
  176. }
  177. esp_err_t sdmmc_send_cmd_send_cid(sdmmc_card_t *card, sdmmc_cid_t *out_cid)
  178. {
  179. assert(out_cid);
  180. assert(host_is_spi(card) && "SEND_CID should only be used in SPI mode");
  181. assert(!card->is_mmc && "MMC cards are not supported in SPI mode");
  182. sdmmc_response_t buf;
  183. sdmmc_command_t cmd = {
  184. .opcode = MMC_SEND_CID,
  185. .flags = SCF_CMD_READ | SCF_CMD_ADTC,
  186. .arg = 0,
  187. .data = &buf[0],
  188. .datalen = sizeof(buf)
  189. };
  190. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  191. if (err != ESP_OK) {
  192. return err;
  193. }
  194. sdmmc_flip_byte_order(buf, sizeof(buf));
  195. return sdmmc_decode_cid(buf, out_cid);
  196. }
  197. esp_err_t sdmmc_send_cmd_set_relative_addr(sdmmc_card_t* card, uint16_t* out_rca)
  198. {
  199. assert(out_rca);
  200. sdmmc_command_t cmd = {
  201. .opcode = SD_SEND_RELATIVE_ADDR,
  202. .flags = SCF_CMD_BCR | SCF_RSP_R6
  203. };
  204. /* MMC cards expect us to set the RCA.
  205. * Set RCA to 1 since we don't support multiple cards on the same bus, for now.
  206. */
  207. uint16_t mmc_rca = 1;
  208. if (card->is_mmc) {
  209. cmd.arg = MMC_ARG_RCA(mmc_rca);
  210. }
  211. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  212. if (err != ESP_OK) {
  213. return err;
  214. }
  215. *out_rca = (card->is_mmc) ? mmc_rca : SD_R6_RCA(cmd.response);
  216. return ESP_OK;
  217. }
  218. esp_err_t sdmmc_send_cmd_set_blocklen(sdmmc_card_t* card, sdmmc_csd_t* csd)
  219. {
  220. sdmmc_command_t cmd = {
  221. .opcode = MMC_SET_BLOCKLEN,
  222. .arg = csd->sector_size,
  223. .flags = SCF_CMD_AC | SCF_RSP_R1
  224. };
  225. return sdmmc_send_cmd(card, &cmd);
  226. }
  227. esp_err_t sdmmc_send_cmd_send_csd(sdmmc_card_t* card, sdmmc_csd_t* out_csd)
  228. {
  229. /* The trick with SEND_CSD is that in SPI mode, it acts as a data read
  230. * command, while in SD mode it is an AC command with R2 response.
  231. */
  232. sdmmc_response_t spi_buf;
  233. const bool is_spi = host_is_spi(card);
  234. sdmmc_command_t cmd = {
  235. .opcode = MMC_SEND_CSD,
  236. .arg = is_spi ? 0 : MMC_ARG_RCA(card->rca),
  237. .flags = is_spi ? (SCF_CMD_READ | SCF_CMD_ADTC | SCF_RSP_R1) :
  238. (SCF_CMD_AC | SCF_RSP_R2),
  239. .data = is_spi ? &spi_buf[0] : 0,
  240. .datalen = is_spi ? sizeof(spi_buf) : 0,
  241. };
  242. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  243. if (err != ESP_OK) {
  244. return err;
  245. }
  246. uint32_t* ptr = cmd.response;
  247. if (is_spi) {
  248. sdmmc_flip_byte_order(spi_buf, sizeof(spi_buf));
  249. ptr = spi_buf;
  250. }
  251. if (card->is_mmc) {
  252. err = sdmmc_mmc_decode_csd(cmd.response, out_csd);
  253. } else {
  254. err = sdmmc_decode_csd(ptr, out_csd);
  255. }
  256. return err;
  257. }
  258. esp_err_t sdmmc_send_cmd_select_card(sdmmc_card_t* card, uint32_t rca)
  259. {
  260. /* Don't expect to see a response when de-selecting a card */
  261. uint32_t response = (rca == 0) ? 0 : SCF_RSP_R1;
  262. sdmmc_command_t cmd = {
  263. .opcode = MMC_SELECT_CARD,
  264. .arg = MMC_ARG_RCA(rca),
  265. .flags = SCF_CMD_AC | response
  266. };
  267. return sdmmc_send_cmd(card, &cmd);
  268. }
  269. esp_err_t sdmmc_send_cmd_send_scr(sdmmc_card_t* card, sdmmc_scr_t *out_scr)
  270. {
  271. size_t datalen = 8;
  272. uint32_t* buf = (uint32_t*) heap_caps_malloc(datalen, MALLOC_CAP_DMA);
  273. if (buf == NULL) {
  274. return ESP_ERR_NO_MEM;
  275. }
  276. sdmmc_command_t cmd = {
  277. .data = buf,
  278. .datalen = datalen,
  279. .blklen = datalen,
  280. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  281. .opcode = SD_APP_SEND_SCR
  282. };
  283. esp_err_t err = sdmmc_send_app_cmd(card, &cmd);
  284. if (err == ESP_OK) {
  285. err = sdmmc_decode_scr(buf, out_scr);
  286. }
  287. free(buf);
  288. return err;
  289. }
  290. esp_err_t sdmmc_send_cmd_set_bus_width(sdmmc_card_t* card, int width)
  291. {
  292. sdmmc_command_t cmd = {
  293. .opcode = SD_APP_SET_BUS_WIDTH,
  294. .flags = SCF_RSP_R1 | SCF_CMD_AC,
  295. .arg = (width == 4) ? SD_ARG_BUS_WIDTH_4 : SD_ARG_BUS_WIDTH_1,
  296. };
  297. return sdmmc_send_app_cmd(card, &cmd);
  298. }
  299. esp_err_t sdmmc_send_cmd_crc_on_off(sdmmc_card_t* card, bool crc_enable)
  300. {
  301. assert(host_is_spi(card) && "CRC_ON_OFF can only be used in SPI mode");
  302. sdmmc_command_t cmd = {
  303. .opcode = SD_CRC_ON_OFF,
  304. .arg = crc_enable ? 1 : 0,
  305. .flags = SCF_CMD_AC | SCF_RSP_R1
  306. };
  307. return sdmmc_send_cmd(card, &cmd);
  308. }
  309. esp_err_t sdmmc_send_cmd_send_status(sdmmc_card_t* card, uint32_t* out_status)
  310. {
  311. sdmmc_command_t cmd = {
  312. .opcode = MMC_SEND_STATUS,
  313. .arg = MMC_ARG_RCA(card->rca),
  314. .flags = SCF_CMD_AC | SCF_RSP_R1
  315. };
  316. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  317. if (err != ESP_OK) {
  318. return err;
  319. }
  320. if (out_status) {
  321. if (host_is_spi(card)) {
  322. *out_status = SD_SPI_R2(cmd.response);
  323. } else {
  324. *out_status = MMC_R1(cmd.response);
  325. }
  326. }
  327. return ESP_OK;
  328. }
  329. esp_err_t sdmmc_write_sectors(sdmmc_card_t* card, const void* src,
  330. size_t start_block, size_t block_count)
  331. {
  332. esp_err_t err = ESP_OK;
  333. size_t block_size = card->csd.sector_size;
  334. if (esp_ptr_dma_capable(src) && (intptr_t)src % 4 == 0) {
  335. err = sdmmc_write_sectors_dma(card, src, start_block, block_count);
  336. } else {
  337. // SDMMC peripheral needs DMA-capable buffers. Split the write into
  338. // separate single block writes, if needed, and allocate a temporary
  339. // DMA-capable buffer.
  340. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  341. if (tmp_buf == NULL) {
  342. return ESP_ERR_NO_MEM;
  343. }
  344. const uint8_t* cur_src = (const uint8_t*) src;
  345. for (size_t i = 0; i < block_count; ++i) {
  346. memcpy(tmp_buf, cur_src, block_size);
  347. cur_src += block_size;
  348. err = sdmmc_write_sectors_dma(card, tmp_buf, start_block + i, 1);
  349. if (err != ESP_OK) {
  350. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  351. __func__, err, start_block, i);
  352. break;
  353. }
  354. }
  355. free(tmp_buf);
  356. }
  357. return err;
  358. }
  359. esp_err_t sdmmc_write_sectors_dma(sdmmc_card_t* card, const void* src,
  360. size_t start_block, size_t block_count)
  361. {
  362. if (start_block + block_count > card->csd.capacity) {
  363. return ESP_ERR_INVALID_SIZE;
  364. }
  365. size_t block_size = card->csd.sector_size;
  366. sdmmc_command_t cmd = {
  367. .flags = SCF_CMD_ADTC | SCF_RSP_R1,
  368. .blklen = block_size,
  369. .data = (void*) src,
  370. .datalen = block_count * block_size,
  371. .timeout_ms = SDMMC_WRITE_CMD_TIMEOUT_MS
  372. };
  373. if (block_count == 1) {
  374. cmd.opcode = MMC_WRITE_BLOCK_SINGLE;
  375. } else {
  376. cmd.opcode = MMC_WRITE_BLOCK_MULTIPLE;
  377. }
  378. if (card->ocr & SD_OCR_SDHC_CAP) {
  379. cmd.arg = start_block;
  380. } else {
  381. cmd.arg = start_block * block_size;
  382. }
  383. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  384. if (err != ESP_OK) {
  385. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  386. return err;
  387. }
  388. uint32_t status = 0;
  389. size_t count = 0;
  390. /* SD mode: wait for the card to become idle based on R1 status */
  391. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  392. // TODO: add some timeout here
  393. err = sdmmc_send_cmd_send_status(card, &status);
  394. if (err != ESP_OK) {
  395. return err;
  396. }
  397. if (++count % 10 == 0) {
  398. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  399. }
  400. }
  401. /* SPI mode: although card busy indication is based on the busy token,
  402. * SD spec recommends that the host checks the results of programming by sending
  403. * SEND_STATUS command. Some of the conditions reported in SEND_STATUS are not
  404. * reported via a data error token.
  405. */
  406. if (host_is_spi(card)) {
  407. err = sdmmc_send_cmd_send_status(card, &status);
  408. if (err != ESP_OK) {
  409. return err;
  410. }
  411. if (status & SD_SPI_R2_CARD_LOCKED) {
  412. ESP_LOGE(TAG, "%s: write failed, card is locked: r2=0x%04x",
  413. __func__, status);
  414. return ESP_ERR_INVALID_STATE;
  415. }
  416. if (status != 0) {
  417. ESP_LOGE(TAG, "%s: card status indicates an error after write operation: r2=0x%04x",
  418. __func__, status);
  419. return ESP_ERR_INVALID_RESPONSE;
  420. }
  421. }
  422. return ESP_OK;
  423. }
  424. esp_err_t sdmmc_read_sectors(sdmmc_card_t* card, void* dst,
  425. size_t start_block, size_t block_count)
  426. {
  427. esp_err_t err = ESP_OK;
  428. size_t block_size = card->csd.sector_size;
  429. if (esp_ptr_dma_capable(dst) && (intptr_t)dst % 4 == 0) {
  430. err = sdmmc_read_sectors_dma(card, dst, start_block, block_count);
  431. } else {
  432. // SDMMC peripheral needs DMA-capable buffers. Split the read into
  433. // separate single block reads, if needed, and allocate a temporary
  434. // DMA-capable buffer.
  435. void* tmp_buf = heap_caps_malloc(block_size, MALLOC_CAP_DMA);
  436. if (tmp_buf == NULL) {
  437. return ESP_ERR_NO_MEM;
  438. }
  439. uint8_t* cur_dst = (uint8_t*) dst;
  440. for (size_t i = 0; i < block_count; ++i) {
  441. err = sdmmc_read_sectors_dma(card, tmp_buf, start_block + i, 1);
  442. if (err != ESP_OK) {
  443. ESP_LOGD(TAG, "%s: error 0x%x writing block %d+%d",
  444. __func__, err, start_block, i);
  445. break;
  446. }
  447. memcpy(cur_dst, tmp_buf, block_size);
  448. cur_dst += block_size;
  449. }
  450. free(tmp_buf);
  451. }
  452. return err;
  453. }
  454. esp_err_t sdmmc_read_sectors_dma(sdmmc_card_t* card, void* dst,
  455. size_t start_block, size_t block_count)
  456. {
  457. if (start_block + block_count > card->csd.capacity) {
  458. return ESP_ERR_INVALID_SIZE;
  459. }
  460. size_t block_size = card->csd.sector_size;
  461. sdmmc_command_t cmd = {
  462. .flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
  463. .blklen = block_size,
  464. .data = (void*) dst,
  465. .datalen = block_count * block_size
  466. };
  467. if (block_count == 1) {
  468. cmd.opcode = MMC_READ_BLOCK_SINGLE;
  469. } else {
  470. cmd.opcode = MMC_READ_BLOCK_MULTIPLE;
  471. }
  472. if (card->ocr & SD_OCR_SDHC_CAP) {
  473. cmd.arg = start_block;
  474. } else {
  475. cmd.arg = start_block * block_size;
  476. }
  477. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  478. if (err != ESP_OK) {
  479. ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
  480. return err;
  481. }
  482. uint32_t status = 0;
  483. size_t count = 0;
  484. while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
  485. // TODO: add some timeout here
  486. err = sdmmc_send_cmd_send_status(card, &status);
  487. if (err != ESP_OK) {
  488. return err;
  489. }
  490. if (++count % 10 == 0) {
  491. ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
  492. }
  493. }
  494. return ESP_OK;
  495. }
  496. esp_err_t sdmmc_erase_sectors(sdmmc_card_t* card, size_t start_sector,
  497. size_t sector_count, sdmmc_erase_arg_t arg)
  498. {
  499. if (start_sector + sector_count > card->csd.capacity) {
  500. return ESP_ERR_INVALID_SIZE;
  501. }
  502. uint32_t cmd38_arg;
  503. if (arg == SDMMC_ERASE_ARG) {
  504. cmd38_arg = card->is_mmc ? SDMMC_MMC_TRIM_ARG : SDMMC_SD_ERASE_ARG;
  505. } else {
  506. cmd38_arg = card->is_mmc ? SDMMC_MMC_DISCARD_ARG : SDMMC_SD_DISCARD_ARG;
  507. }
  508. /* validate the CMD38 argument against card supported features */
  509. if (card->is_mmc) {
  510. if ((cmd38_arg == SDMMC_MMC_TRIM_ARG) && (sdmmc_can_trim(card) != ESP_OK)) {
  511. return ESP_ERR_NOT_SUPPORTED;
  512. }
  513. if ((cmd38_arg == SDMMC_MMC_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
  514. return ESP_ERR_NOT_SUPPORTED;
  515. }
  516. } else { // SD card
  517. if ((cmd38_arg == SDMMC_SD_DISCARD_ARG) && (sdmmc_can_discard(card) != ESP_OK)) {
  518. return ESP_ERR_NOT_SUPPORTED;
  519. }
  520. }
  521. /* default as block unit address */
  522. size_t addr_unit_mult = 1;
  523. if (!(card->ocr & SD_OCR_SDHC_CAP)) {
  524. addr_unit_mult = card->csd.sector_size;
  525. }
  526. /* prepare command to set the start address */
  527. sdmmc_command_t cmd = {
  528. .flags = SCF_CMD_AC | SCF_RSP_R1 | SCF_WAIT_BUSY,
  529. .opcode = card->is_mmc ? MMC_ERASE_GROUP_START :
  530. SD_ERASE_GROUP_START,
  531. .arg = (start_sector * addr_unit_mult),
  532. };
  533. esp_err_t err = sdmmc_send_cmd(card, &cmd);
  534. if (err != ESP_OK) {
  535. ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_START) returned 0x%x", __func__, err);
  536. return err;
  537. }
  538. /* prepare command to set the end address */
  539. cmd.opcode = card->is_mmc ? MMC_ERASE_GROUP_END : SD_ERASE_GROUP_END;
  540. cmd.arg = ((start_sector + (sector_count - 1)) * addr_unit_mult);
  541. err = sdmmc_send_cmd(card, &cmd);
  542. if (err != ESP_OK) {
  543. ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE_GROUP_END) returned 0x%x", __func__, err);
  544. return err;
  545. }
  546. /* issue erase command */
  547. memset((void *)&cmd, 0 , sizeof(sdmmc_command_t));
  548. cmd.flags = SCF_CMD_AC | SCF_RSP_R1B | SCF_WAIT_BUSY;
  549. cmd.opcode = MMC_ERASE;
  550. cmd.arg = cmd38_arg;
  551. cmd.timeout_ms = sdmmc_get_erase_timeout_ms(card, cmd38_arg, sector_count * card->csd.sector_size / 1024);
  552. err = sdmmc_send_cmd(card, &cmd);
  553. if (err != ESP_OK) {
  554. ESP_LOGE(TAG, "%s: sdmmc_send_cmd (ERASE) returned 0x%x", __func__, err);
  555. return err;
  556. }
  557. if (host_is_spi(card)) {
  558. uint32_t status;
  559. err = sdmmc_send_cmd_send_status(card, &status);
  560. if (err != ESP_OK) {
  561. return err;
  562. }
  563. if (status != 0) {
  564. ESP_LOGE(TAG, "%s: card status indicates an error after erase operation: r2=0x%04x",
  565. __func__, status);
  566. return ESP_ERR_INVALID_RESPONSE;
  567. }
  568. }
  569. return ESP_OK;
  570. }
  571. esp_err_t sdmmc_can_discard(sdmmc_card_t* card)
  572. {
  573. if ((card->is_mmc) && (card->ext_csd.rev >= EXT_CSD_REV_1_6)) {
  574. return ESP_OK;
  575. }
  576. // SD card
  577. if ((!card->is_mmc) && !host_is_spi(card) && (card->ssr.discard_support == 1)) {
  578. return ESP_OK;
  579. }
  580. return ESP_FAIL;
  581. }
  582. esp_err_t sdmmc_can_trim(sdmmc_card_t* card)
  583. {
  584. if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_GB_CL_EN)) {
  585. FF_CAN_TRIM = 1;
  586. return ESP_OK;
  587. }
  588. FF_CAN_TRIM = 0;
  589. return ESP_FAIL;
  590. }
  591. esp_err_t sdmmc_mmc_can_sanitize(sdmmc_card_t* card)
  592. {
  593. if ((card->is_mmc) && (card->ext_csd.sec_feature & EXT_CSD_SEC_SANITIZE)) {
  594. return ESP_OK;
  595. }
  596. return ESP_FAIL;
  597. }
  598. esp_err_t sdmmc_mmc_sanitize(sdmmc_card_t* card, uint32_t timeout_ms)
  599. {
  600. esp_err_t err;
  601. uint8_t index = EXT_CSD_SANITIZE_START;
  602. uint8_t set = EXT_CSD_CMD_SET_NORMAL;
  603. uint8_t value = 0x01;
  604. if (sdmmc_mmc_can_sanitize(card) != ESP_OK) {
  605. return ESP_ERR_NOT_SUPPORTED;
  606. }
  607. /*
  608. * A Sanitize operation is initiated by writing a value to the extended
  609. * CSD[165] SANITIZE_START. While the device is performing the sanitize
  610. * operation, the busy line is asserted.
  611. * SWITCH command is used to write the EXT_CSD register.
  612. */
  613. sdmmc_command_t cmd = {
  614. .opcode = MMC_SWITCH,
  615. .arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set,
  616. .flags = SCF_RSP_R1B | SCF_CMD_AC | SCF_WAIT_BUSY,
  617. .timeout_ms = timeout_ms,
  618. };
  619. err = sdmmc_send_cmd(card, &cmd);
  620. if (err == ESP_OK) {
  621. //check response bit to see that switch was accepted
  622. if (MMC_R1(cmd.response) & MMC_R1_SWITCH_ERROR) {
  623. err = ESP_ERR_INVALID_RESPONSE;
  624. }
  625. }
  626. return err;
  627. }
  628. esp_err_t sdmmc_full_erase(sdmmc_card_t* card)
  629. {
  630. sdmmc_erase_arg_t arg = SDMMC_SD_ERASE_ARG; // erase by default for SD card
  631. esp_err_t err;
  632. if (card->is_mmc) {
  633. arg = sdmmc_mmc_can_sanitize(card) == ESP_OK ? SDMMC_MMC_DISCARD_ARG: SDMMC_MMC_TRIM_ARG;
  634. }
  635. err = sdmmc_erase_sectors(card, 0, card->csd.capacity, arg);
  636. if ((err == ESP_OK) && (arg == SDMMC_MMC_DISCARD_ARG)) {
  637. uint32_t timeout_ms = sdmmc_get_erase_timeout_ms(card, SDMMC_MMC_DISCARD_ARG, card->csd.capacity * ((uint64_t) card->csd.sector_size) / 1024);
  638. return sdmmc_mmc_sanitize(card, timeout_ms);
  639. }
  640. return err;
  641. }
  642. esp_err_t sdmmc_get_status(sdmmc_card_t* card)
  643. {
  644. uint32_t stat;
  645. return sdmmc_send_cmd_send_status(card, &stat);
  646. }