import threading import time import logging import serial import serial.tools.list_ports import websocket import asyncio import os from modules.core.state import state from modules.led.led_interface import LEDInterface from modules.led.idle_timeout_manager import idle_timeout_manager logger = logging.getLogger(__name__) IGNORE_PORTS = ['/dev/cu.debug-console', '/dev/cu.Bluetooth-Incoming-Port', '/dev/ttyS0'] # Ports to deprioritize during auto-connect (shown in UI but not auto-selected) DEPRIORITIZED_PORTS = ['/dev/ttyS0'] async def _check_table_is_idle() -> bool: """Helper function to check if table is idle.""" return not state.current_playing_file or state.pause_requested def _start_idle_led_timeout(): """Start idle LED timeout if enabled.""" if not state.dw_led_idle_timeout_enabled or state.dw_led_idle_timeout_minutes <= 0: return logger.debug(f"Starting idle LED timeout: {state.dw_led_idle_timeout_minutes} minutes") idle_timeout_manager.start_idle_timeout( timeout_minutes=state.dw_led_idle_timeout_minutes, state=state, check_idle_callback=_check_table_is_idle ) ############################################################################### # Connection Abstraction ############################################################################### class BaseConnection: """Abstract base class for a connection.""" def send(self, data: str) -> None: raise NotImplementedError def flush(self) -> None: raise NotImplementedError def readline(self) -> str: raise NotImplementedError def in_waiting(self) -> int: raise NotImplementedError def is_connected(self) -> bool: raise NotImplementedError def close(self) -> None: raise NotImplementedError ############################################################################### # Serial Connection Implementation ############################################################################### class SerialConnection(BaseConnection): def __init__(self, port: str, baudrate: int = 115200, timeout: int = 2): self.port = port self.baudrate = baudrate self.timeout = timeout self.lock = threading.RLock() logger.info(f'Connecting to Serial port {port}') self.ser = serial.Serial(port, baudrate, timeout=timeout) state.port = port logger.info(f'Connected to Serial port {port}') def send(self, data: str) -> None: with self.lock: self.ser.write(data.encode()) self.ser.flush() def flush(self) -> None: with self.lock: self.ser.flush() def readline(self) -> str: with self.lock: return self.ser.readline().decode().strip() def in_waiting(self) -> int: with self.lock: return self.ser.in_waiting def reset_input_buffer(self) -> None: """Clear any stale data from the serial input buffer.""" with self.lock: if self.ser and self.ser.is_open: self.ser.reset_input_buffer() def is_connected(self) -> bool: return self.ser is not None and self.ser.is_open def close(self) -> None: # Save current state synchronously first (critical for position persistence) try: state.save() except Exception as e: logger.error(f"Error saving state on close: {e}") # Schedule async position update if event loop exists, otherwise skip # This avoids creating nested event loops which causes RuntimeError try: asyncio.get_running_loop() # We're in async context - schedule as task (fire-and-forget) asyncio.create_task(update_machine_position()) logger.debug("Scheduled async machine position update") except RuntimeError: # No running event loop - we're in sync context # Position was already saved above, skip async update to avoid nested loop logger.debug("No event loop running, skipping async position update") with self.lock: if self.ser.is_open: self.ser.close() ############################################################################### # WebSocket Connection Implementation ############################################################################### class WebSocketConnection(BaseConnection): def __init__(self, url: str, timeout: int = 5): self.url = url self.timeout = timeout self.lock = threading.RLock() self.ws = None self.connect() def connect(self): logger.info(f'Connecting to Websocket {self.url}') self.ws = websocket.create_connection(self.url, timeout=self.timeout) state.port = self.url logger.info(f'Connected to Websocket {self.url}') def send(self, data: str) -> None: with self.lock: self.ws.send(data) def flush(self) -> None: # WebSocket sends immediately; nothing to flush. pass def readline(self) -> str: with self.lock: data = self.ws.recv() # Decode bytes to string if necessary if isinstance(data, bytes): data = data.decode('utf-8') return data.strip() def in_waiting(self) -> int: return 0 # Not applicable for WebSocket def is_connected(self) -> bool: return self.ws is not None def close(self) -> None: # Save current state synchronously first (critical for position persistence) try: state.save() except Exception as e: logger.error(f"Error saving state on close: {e}") # Schedule async position update if event loop exists, otherwise skip # This avoids creating nested event loops which causes RuntimeError try: asyncio.get_running_loop() # We're in async context - schedule as task (fire-and-forget) asyncio.create_task(update_machine_position()) logger.debug("Scheduled async machine position update") except RuntimeError: # No running event loop - we're in sync context # Position was already saved above, skip async update to avoid nested loop logger.debug("No event loop running, skipping async position update") with self.lock: if self.ws: self.ws.close() self.ws = None def list_serial_ports(): """Return a list of available serial ports.""" ports = serial.tools.list_ports.comports() available_ports = [port.device for port in ports if port.device not in IGNORE_PORTS] logger.debug(f"Available serial ports: {available_ports}") return available_ports def device_init(homing=True): # IMPORTANT: Query machine position BEFORE reset to determine if homing is needed # If machine wasn't power cycled, it retains position and we can skip homing # Reset ($Bye) zeroes position counters, so we must check BEFORE reset try: if get_machine_steps(): logger.info(f"x_steps_per_mm: {state.x_steps_per_mm}, y_steps_per_mm: {state.y_steps_per_mm}, gear_ratio: {state.gear_ratio}") else: logger.fatal("Failed to get machine steps") state.conn.close() return False except Exception: logger.fatal("Not GRBL firmware") state.conn.close() return False # Check machine position BEFORE reset to decide if homing is needed machine_x, machine_y = get_machine_position() needs_homing = False if machine_x != state.machine_x or machine_y != state.machine_y: logger.info(f'Machine position mismatch - machine: ({machine_x}, {machine_y}), saved: ({state.machine_x}, {state.machine_y})') needs_homing = homing else: logger.info('Machine position matches saved state, skipping home') logger.info(f'Theta: {state.current_theta}, rho: {state.current_rho}') logger.info(f'Position: ({machine_x}, {machine_y})') # Now perform soft reset to ensure controller is in a clean state # This clears any pending commands and resets position counters to 0 logger.info("Performing soft reset for clean controller state...") perform_soft_reset_sync() time.sleep(1) # Extra stabilization after controller restart # Reset work coordinate offsets for a clean start # This ensures we're using work coordinates (G54) starting from 0 reset_work_coordinates() # Home if position was mismatched (machine may have been power cycled) if needs_homing: logger.info("Homing required due to position mismatch...") success = home() if not success: logger.error("Homing failed during device initialization") # If sensor homing failed, close connection and return False # This prevents auto-connection from completing until user takes action if state.sensor_homing_failed: logger.error("Sensor homing failed - closing connection. User must check sensor or switch to crash homing.") state.conn.close() state.conn = None return False time.sleep(2) # Allow time for the connection to establish return True def connect_device(homing=True): # Initialize LED interface based on configured provider # Note: DW LEDs are initialized at startup in main.py, so we preserve the existing controller if state.led_provider == "wled" and state.wled_ip: state.led_controller = LEDInterface(provider="wled", ip_address=state.wled_ip) elif state.led_provider == "dw_leds": # DW LEDs are already initialized in main.py at startup # Only initialize here if not already set up (e.g., reconnection scenario) if not state.led_controller or not state.led_controller.is_configured: state.led_controller = LEDInterface( provider="dw_leds", num_leds=state.dw_led_num_leds, gpio_pin=state.dw_led_gpio_pin, pixel_order=state.dw_led_pixel_order, brightness=state.dw_led_brightness / 100.0, speed=state.dw_led_speed, intensity=state.dw_led_intensity ) elif state.led_provider == "hyperion" and state.hyperion_ip: state.led_controller = LEDInterface( provider="hyperion", ip_address=state.hyperion_ip, port=state.hyperion_port ) elif state.led_provider == "none" or not state.led_provider: state.led_controller = None # For other cases (e.g., wled without IP), preserve existing controller # Show loading effect if state.led_controller: state.led_controller.effect_loading() ports = list_serial_ports() # Check auto-connect mode: "__auto__" or None = auto, "__none__" = disabled, else specific port if state.preferred_port == "__none__": logger.info("Auto-connect disabled by user preference") # Skip all auto-connect logic, no connection will be established # Priority for auto-connect: # 1. Preferred port (user's explicit choice) if available # 2. Last used port if available # 3. First available port as fallback elif state.preferred_port and state.preferred_port not in ("__auto__", None) and state.preferred_port in ports: logger.info(f"Connecting to preferred port: {state.preferred_port}") state.conn = SerialConnection(state.preferred_port) elif state.port and state.port in ports: logger.info(f"Connecting to last used port: {state.port}") state.conn = SerialConnection(state.port) elif ports: # Prefer non-deprioritized ports (e.g., USB serial over hardware UART) preferred_ports = [p for p in ports if p not in DEPRIORITIZED_PORTS] fallback_ports = [p for p in ports if p in DEPRIORITIZED_PORTS] if preferred_ports: logger.info(f"Connecting to first available port: {preferred_ports[0]}") state.conn = SerialConnection(preferred_ports[0]) elif fallback_ports: logger.info(f"Connecting to deprioritized port (no better option): {fallback_ports[0]}") state.conn = SerialConnection(fallback_ports[0]) else: logger.error("Auto connect failed: No serial ports available") # state.conn = WebSocketConnection('ws://fluidnc.local:81') if (state.conn.is_connected() if state.conn else False): # Check for alarm state and unlock if needed before initializing if not check_and_unlock_alarm(): logger.error("Failed to unlock device from alarm state") # Still proceed with device_init but log the issue device_init(homing) # Show connected effect, then transition to configured idle effect if state.led_controller: logger.info("Showing LED connected effect (green flash)") state.led_controller.effect_connected() # Set the configured idle effect after connection logger.info(f"Setting LED to idle effect: {state.dw_led_idle_effect}") state.led_controller.effect_idle(state.dw_led_idle_effect) _start_idle_led_timeout() def check_and_unlock_alarm(): """ Check if GRBL is in alarm state and unlock it with $X if needed. Returns True if device is ready (unlocked or no alarm), False on error. Note: If sensors are physically triggered (Pn:XY), the alarm may persist but we still return True to allow homing to proceed. """ try: logger.info("Checking device status for alarm state...") # Clear any pending data in buffer first while state.conn.in_waiting() > 0: state.conn.readline() # Send status query state.conn.send('?\n') time.sleep(0.2) # Read response with timeout max_attempts = 10 response = None for attempt in range(max_attempts): if state.conn.in_waiting() > 0: response = state.conn.readline() logger.debug(f"Status response: {response}") if response and ('<' in response or 'Alarm' in response or 'Idle' in response): break # Got a valid status response time.sleep(0.1) if not response: logger.warning("No status response received, proceeding anyway") return True # Check for alarm state if "Alarm" in response: logger.warning(f"Device in ALARM state: {response}") # Send unlock command logger.info("Sending $X to unlock...") state.conn.send('$X\n') time.sleep(1.0) # Give more time for unlock to process # Clear buffer before verification while state.conn.in_waiting() > 0: discarded = state.conn.readline() logger.debug(f"Discarded response: {discarded}") # Verify unlock succeeded state.conn.send('?\n') time.sleep(0.3) verify_response = None for attempt in range(max_attempts): if state.conn.in_waiting() > 0: verify_response = state.conn.readline() logger.debug(f"Verification response: {verify_response}") if verify_response and '<' in verify_response: break time.sleep(0.1) if verify_response and "Alarm" in verify_response: # Check if pins are physically triggered (Pn: in response) if "Pn:" in verify_response: logger.warning(f"Alarm persists due to triggered sensors: {verify_response}") logger.warning("Proceeding anyway - homing may clear the sensor state") return True # Let homing attempt to proceed else: logger.error("Failed to unlock device from alarm state") return False else: logger.info("Device successfully unlocked") return True else: logger.info("Device not in alarm state, proceeding normally") return True except Exception as e: logger.error(f"Error checking/unlocking alarm: {e}") return False def get_status_response() -> str: """ Send a status query ('?') and return the response if available. Accepts both MPos (machine position) and WPos (work position) formats depending on GRBL's $10 setting. """ if state.conn is None or not state.conn.is_connected(): logger.warning("Cannot get status response: no active connection") return False while True: try: state.conn.send('?') response = state.conn.readline() # Accept either MPos or WPos format (depends on GRBL $10 setting) if "MPos" in response or "WPos" in response: logger.debug(f"Status response: {response}") return response except Exception as e: logger.error(f"Error getting status response: {e}") return False time.sleep(1) def parse_machine_position(response: str): """ Parse the position from a status response. Supports both MPos (machine position) and WPos (work position) formats depending on GRBL's $10 setting. Expected formats: "<...|MPos:-994.869,-321.861,0.000|...>" "<...|WPos:0.000,19.000,0.000|...>" Returns a tuple (x, y) if found, else None. """ if "MPos:" not in response and "WPos:" not in response: return None try: # Try MPos first, then WPos pos_section = next((part for part in response.split("|") if part.startswith("MPos:")), None) if pos_section is None: pos_section = next((part for part in response.split("|") if part.startswith("WPos:")), None) if pos_section: pos_str = pos_section.split(":", 1)[1] pos_values = pos_str.split(",") pos_x = float(pos_values[0]) pos_y = float(pos_values[1]) return pos_x, pos_y except Exception as e: logger.error(f"Error parsing position: {e}") return None async def send_grbl_coordinates(x, y, speed=600, timeout=30, home=False): """ Send a G-code command to FluidNC and wait for an 'ok' response. If no response after set timeout, returns False. Args: x: X coordinate y: Y coordinate speed: Feed rate in mm/min timeout: Maximum time in seconds to wait for 'ok' response home: If True, sends jog command ($J=) instead of G1 Returns: True on success, False on timeout or error """ logger.debug(f"Sending G-code: X{x} Y{y} at F{speed}") overall_start_time = time.time() max_retries = 3 retry_count = 0 while retry_count < max_retries: # Check overall timeout if time.time() - overall_start_time > timeout: logger.error(f"Timeout waiting for 'ok' response after {timeout}s") return False try: gcode = f"$J=G91 G21 Y{y:.2f} F{speed}" if home else f"G1 X{x:.2f} Y{y:.2f} F{speed}" await asyncio.to_thread(state.conn.send, gcode + "\n") logger.debug(f"Sent command: {gcode}") # Wait for 'ok' response with timeout response_start = time.time() response_timeout = min(10, timeout - (time.time() - overall_start_time)) while time.time() - response_start < response_timeout: # Check overall timeout if time.time() - overall_start_time > timeout: logger.error("Overall timeout waiting for 'ok' response") return False response = await asyncio.to_thread(state.conn.readline) if response: logger.debug(f"Response: {response}") if response.lower().strip() == "ok": logger.debug("Command execution confirmed.") return True elif 'error' in response.lower(): logger.warning(f"Got error response: {response}") # Don't immediately fail - some errors are recoverable else: await asyncio.sleep(0.05) # Response timeout for this attempt logger.warning(f"No 'ok' received for {gcode}, retrying... ({retry_count + 1}/{max_retries})") retry_count += 1 await asyncio.sleep(0.2) except Exception as e: error_str = str(e) logger.warning(f"Error sending command: {error_str}") # Immediately return for device not configured errors if "Device not configured" in error_str or "Errno 6" in error_str: logger.error(f"Device configuration error detected: {error_str}") state.stop_requested = True state.conn = None state.is_connected = False logger.info("Connection marked as disconnected due to device error") return False retry_count += 1 await asyncio.sleep(0.2) logger.error(f"Failed to receive 'ok' response after {max_retries} retries") return False def _detect_firmware(): """ Detect firmware type (FluidNC or GRBL) by sending $I command. Returns tuple: (firmware_type: str, version: str or None) firmware_type is 'fluidnc', 'grbl', or 'unknown' """ if not state.conn or not state.conn.is_connected(): return ('unknown', None) # Clear buffer first try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception: pass try: state.conn.send("$I\n") time.sleep(0.3) firmware_type = 'unknown' version = None start_time = time.time() while time.time() - start_time < 2.0: if state.conn.in_waiting() > 0: response = state.conn.readline() if response: logger.debug(f"Firmware detection response: {response}") response_lower = response.lower() if 'fluidnc' in response_lower: firmware_type = 'fluidnc' # Try to extract version from response like "FluidNC v3.7.2" if 'v' in response_lower: parts = response.split() for part in parts: if part.lower().startswith('v') and any(c.isdigit() for c in part): version = part break break elif 'grbl' in response_lower and 'fluidnc' not in response_lower: firmware_type = 'grbl' # Try to extract version like "Grbl 1.1h" parts = response.split() for i, part in enumerate(parts): if 'grbl' in part.lower() and i + 1 < len(parts): version = parts[i + 1] break break elif response.lower().strip() == 'ok': break else: time.sleep(0.05) # Clear any remaining responses while state.conn.in_waiting() > 0: state.conn.readline() return (firmware_type, version) except Exception as e: logger.warning(f"Firmware detection failed: {e}") return ('unknown', None) def _get_steps_fluidnc(): """ Get steps/mm from FluidNC using individual setting queries. Returns tuple: (x_steps_per_mm, y_steps_per_mm) or (None, None) on failure. Note: Works even when device is in ALARM state (e.g., limit switch active). """ x_steps = None y_steps = None # Clear buffer try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception: pass # Query X steps/mm try: state.conn.send("$/axes/x/steps_per_mm\n") time.sleep(0.2) start_time = time.time() while time.time() - start_time < 2.0: if state.conn.in_waiting() > 0: response = state.conn.readline() if response: logger.debug(f"FluidNC X steps response: {response}") # Response format: "/axes/x/steps_per_mm=200.000" or similar if 'steps_per_mm=' in response: try: x_steps = float(response.split('=')[1].strip()) state.x_steps_per_mm = x_steps logger.info(f"X steps per mm (FluidNC): {x_steps}") except (ValueError, IndexError) as e: logger.warning(f"Failed to parse X steps: {e}") break elif response.lower().strip() == 'ok': break elif 'error' in response.lower() or 'alarm' in response.lower(): # Device may be in alarm state (e.g., limit switch active) # Log and continue - settings queries often work anyway logger.debug(f"Got error/alarm response, continuing: {response}") else: time.sleep(0.05) except Exception as e: logger.error(f"Error querying FluidNC X steps: {e}") # Clear buffer before next query try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception: pass # Query Y steps/mm try: state.conn.send("$/axes/y/steps_per_mm\n") time.sleep(0.2) start_time = time.time() while time.time() - start_time < 2.0: if state.conn.in_waiting() > 0: response = state.conn.readline() if response: logger.debug(f"FluidNC Y steps response: {response}") if 'steps_per_mm=' in response: try: y_steps = float(response.split('=')[1].strip()) state.y_steps_per_mm = y_steps logger.info(f"Y steps per mm (FluidNC): {y_steps}") except (ValueError, IndexError) as e: logger.warning(f"Failed to parse Y steps: {e}") break elif response.lower().strip() == 'ok': break elif 'error' in response.lower() or 'alarm' in response.lower(): logger.debug(f"Got error/alarm response, continuing: {response}") else: time.sleep(0.05) except Exception as e: logger.error(f"Error querying FluidNC Y steps: {e}") # Clear buffer before homing query try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception: pass # Query homing cycle setting (informational - user preference takes precedence) try: state.conn.send("$/axes/y/homing/cycle\n") time.sleep(0.2) start_time = time.time() while time.time() - start_time < 1.5: if state.conn.in_waiting() > 0: response = state.conn.readline() if response: logger.debug(f"FluidNC homing response: {response}") if 'homing/cycle=' in response: try: homing_cycle = int(float(response.split('=')[1].strip())) # cycle >= 1 means homing is enabled in firmware logger.info(f"Firmware homing setting (cycle): {homing_cycle}, using user preference: {state.homing}") except (ValueError, IndexError): pass break elif response.lower().strip() == 'ok': break else: time.sleep(0.05) except Exception as e: logger.debug(f"Could not query FluidNC homing setting: {e}") # Clear buffer try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception: pass return (x_steps, y_steps) def _get_steps_grbl(): """ Get steps/mm from GRBL using $$ command. Returns tuple: (x_steps_per_mm, y_steps_per_mm) or (None, None) on failure. Note: Works even when device is in ALARM state (e.g., limit switch active). $$ command typically responds with settings even during alarm. """ x_steps_per_mm = None y_steps_per_mm = None max_retries = 3 attempt_timeout = 4 for attempt in range(max_retries): logger.info(f"Requesting GRBL settings with $$ command (attempt {attempt + 1}/{max_retries})") try: state.conn.send("$$\n") except Exception as e: logger.error(f"Error sending $$ command: {e}") continue attempt_start = time.time() got_ok = False while time.time() - attempt_start < attempt_timeout: try: response = state.conn.readline() if not response: continue logger.debug(f"Raw response: {response}") for line in response.splitlines(): line = line.strip() if not line: continue logger.debug(f"Config response: {line}") if line.startswith("$100="): x_steps_per_mm = float(line.split("=")[1]) state.x_steps_per_mm = x_steps_per_mm logger.info(f"X steps per mm: {x_steps_per_mm}") elif line.startswith("$101="): y_steps_per_mm = float(line.split("=")[1]) state.y_steps_per_mm = y_steps_per_mm logger.info(f"Y steps per mm: {y_steps_per_mm}") elif line.startswith("$22="): firmware_homing = int(line.split('=')[1]) logger.info(f"Firmware homing setting ($22): {firmware_homing}, using user preference: {state.homing}") elif line.lower() == 'ok': got_ok = True logger.debug("Received 'ok' confirmation from GRBL") elif line.lower().startswith('error') or 'alarm' in line.lower(): # Device may be in alarm state (e.g., limit switch active) # Log and continue - $$ typically works anyway logger.debug(f"Got error/alarm during settings query (proceeding): {line}") if got_ok: if x_steps_per_mm is not None and y_steps_per_mm is not None: logger.info("Successfully received all GRBL settings") break else: logger.warning("Received 'ok' but missing some settings") break except Exception as e: logger.error(f"Error reading GRBL response: {e}") break if x_steps_per_mm is not None and y_steps_per_mm is not None: break if attempt < max_retries - 1: logger.warning(f"Attempt {attempt + 1} did not get all settings, retrying...") time.sleep(0.5) try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception: pass return (x_steps_per_mm, y_steps_per_mm) def get_machine_steps(timeout=10): """ Get machine steps/mm from the controller (FluidNC or GRBL). Returns True if successful, False otherwise. Detects firmware type first: - FluidNC: Uses targeted $/axes/x/steps_per_mm queries (more reliable) - GRBL: Falls back to $$ command with retries """ if not state.conn or not state.conn.is_connected(): logger.error("Cannot get machine steps: No connection available") return False # Clear any pending data in the buffer try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception as e: logger.warning(f"Error clearing buffer: {e}") # Verify controller is responsive before querying try: state.conn.send("?\n") time.sleep(0.2) ready_check_attempts = 5 controller_ready = False for _ in range(ready_check_attempts): if state.conn.in_waiting() > 0: response = state.conn.readline() if response and ('<' in response or 'Idle' in response or 'Alarm' in response): controller_ready = True if 'Alarm' in response: logger.info(f"Controller in ALARM state (likely limit switch active), proceeding with settings query: {response.strip()}") else: logger.debug(f"Controller ready, status: {response}") break time.sleep(0.1) if not controller_ready: logger.warning("Controller not responding to status query, proceeding anyway...") # Clear buffer after readiness check while state.conn.in_waiting() > 0: state.conn.readline() time.sleep(0.1) except Exception as e: logger.warning(f"Readiness check failed: {e}, proceeding anyway...") # Detect firmware type firmware_type, firmware_version = _detect_firmware() if firmware_type == 'fluidnc': if firmware_version: logger.info(f"Detected FluidNC firmware, version: {firmware_version}") else: logger.info("Detected FluidNC firmware (version unknown)") x_steps_per_mm, y_steps_per_mm = _get_steps_fluidnc() # Fallback to GRBL method if FluidNC queries failed if x_steps_per_mm is None or y_steps_per_mm is None: logger.warning("FluidNC setting queries failed, falling back to $$ command...") x_steps_per_mm, y_steps_per_mm = _get_steps_grbl() else: if firmware_type == 'grbl': if firmware_version: logger.info(f"Detected GRBL firmware, version: {firmware_version}") else: logger.info("Detected GRBL firmware (version unknown)") else: logger.info("Could not detect firmware type, using GRBL commands") x_steps_per_mm, y_steps_per_mm = _get_steps_grbl() # Process results and determine table type settings_complete = (x_steps_per_mm is not None and y_steps_per_mm is not None) if settings_complete: if y_steps_per_mm == 180 and x_steps_per_mm == 256: state.table_type = 'dune_weaver_mini' elif y_steps_per_mm == 210 and x_steps_per_mm == 256: state.table_type = 'dune_weaver_mini_pro_byj' elif (y_steps_per_mm == 270 or y_steps_per_mm == 250) and x_steps_per_mm == 200: state.table_type = 'dune_weaver_gold' elif y_steps_per_mm == 287: state.table_type = 'dune_weaver' elif y_steps_per_mm == 164: state.table_type = 'dune_weaver_mini_pro' elif y_steps_per_mm >= 320: state.table_type = 'dune_weaver_pro' else: state.table_type = None logger.warning(f"Unknown table type with Y steps/mm: {y_steps_per_mm}") # Use override if set, otherwise use detected table type effective_table_type = state.table_type_override or state.table_type # Set gear ratio based on effective table type (hardcoded) if effective_table_type in ['dune_weaver_mini', 'dune_weaver_mini_pro', 'dune_weaver_mini_pro_byj', 'dune_weaver_gold']: state.gear_ratio = 6.25 else: state.gear_ratio = 10 # Check for environment variable override gear_ratio_override = os.getenv('GEAR_RATIO') if gear_ratio_override is not None: try: state.gear_ratio = float(gear_ratio_override) logger.info(f"Machine type detected: {state.table_type}, effective: {effective_table_type}, gear ratio: {state.gear_ratio} (from GEAR_RATIO env var)") except ValueError: logger.error(f"Invalid GEAR_RATIO env var value: {gear_ratio_override}, using default: {state.gear_ratio}") logger.info(f"Machine type detected: {state.table_type}, effective: {effective_table_type}, gear ratio: {state.gear_ratio} (hardcoded)") elif state.table_type_override: logger.info(f"Machine type detected: {state.table_type}, overridden to: {effective_table_type}, gear ratio: {state.gear_ratio}") else: logger.info(f"Machine type detected: {state.table_type}, gear ratio: {state.gear_ratio} (hardcoded)") return True else: missing = [] if x_steps_per_mm is None: missing.append("X steps/mm") if y_steps_per_mm is None: missing.append("Y steps/mm") logger.error(f"Failed to get all machine parameters after {timeout}s. Missing: {', '.join(missing)}") return False def home(timeout=120): """ Perform homing sequence based on configured mode: Mode 0 (Crash): - Y axis moves -22mm (or -30mm for mini) until physical stop - Set theta=0, rho=0 (no x0 y0 command) Mode 1 (Sensor): - Send $H command to home both X and Y axes - Wait for [MSG:Homed:X] and [MSG:Homed:Y] messages - Send x0 y0 to zero positions - Set theta to compass offset, rho=0 Args: timeout: Maximum time in seconds to wait for homing to complete (default: 120) Increased from 90s to allow buffer after soft reset recovery """ import threading import math # Check for alarm state before homing and unlock if needed if not check_and_unlock_alarm(): logger.error("Failed to unlock device from alarm state, cannot proceed with homing") return False # Flag to track if homing completed homing_complete = threading.Event() homing_success = False def home_internal(): nonlocal homing_success effective_table_type = state.table_type_override or state.table_type homing_speed = 400 if effective_table_type == 'dune_weaver_mini': homing_speed = 100 try: if state.homing == 1: # Mode 1: Sensor-based homing using $H logger.info("Using sensor-based homing mode ($H)") # Clear any pending responses state.homed_x = False state.homed_y = False # Clear any stale data from previous operations try: while state.conn.in_waiting() > 0: stale = state.conn.readline() logger.debug(f"Cleared stale data before homing: {stale}") except Exception: pass # Send $H command state.conn.send("$H\n") logger.info("Sent $H command, waiting for homing messages...") # Wait for [MSG:Homed:X] and [MSG:Homed:Y] messages max_wait_time = 60 # 60 seconds - boot recovery needs more time start_time = time.time() while (time.time() - start_time) < max_wait_time: try: response = state.conn.readline() if response: logger.debug(f"Homing response: {response}") # Check for homing messages if "[MSG:Homed:X]" in response: state.homed_x = True logger.info("Received [MSG:Homed:X]") if "[MSG:Homed:Y]" in response: state.homed_y = True logger.info("Received [MSG:Homed:Y]") # Break if we've received both messages if state.homed_x and state.homed_y: logger.info("Received both homing confirmation messages") break except Exception as e: logger.error(f"Error reading homing response: {e}") time.sleep(0.1) if not (state.homed_x and state.homed_y): logger.warning(f"Did not receive all homing messages (X:{state.homed_x}, Y:{state.homed_y}), unlocking and continuing...") # Unlock machine to clear any alarm state state.conn.send("$X\n") time.sleep(0.5) # Wait for idle state after $H logger.info("Waiting for device to reach idle state after $H...") idle_reached = check_idle() if not idle_reached: logger.error("Device did not reach idle state after $H command") homing_complete.set() return # If X homed but Y failed, fallback to crash homing for Y if state.homed_x and not state.homed_y: logger.warning("Sensor homing incomplete (Y failed) - falling back to crash homing") # Perform crash homing as fallback logger.info(f"Executing crash homing fallback at {homing_speed} mm/min") loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: if effective_table_type == 'dune_weaver_mini': result = loop.run_until_complete(send_grbl_coordinates(0, -30, homing_speed, home=True)) if not result: logger.error("Crash homing fallback failed") homing_complete.set() return else: result = loop.run_until_complete(send_grbl_coordinates(0, -22, homing_speed, home=True)) if not result: logger.error("Crash homing fallback failed") homing_complete.set() return finally: loop.close() # Wait for idle after crash homing logger.info("Waiting for device to reach idle state after crash homing fallback...") idle_reached = check_idle() if not idle_reached: logger.error("Device did not reach idle state after crash homing fallback") homing_complete.set() return # Set position like crash homing does state.current_theta = 0 state.current_rho = 0 logger.info("Crash homing fallback completed - theta=0, rho=0") elif not state.homed_x and not state.homed_y: # Neither axis homed - this is a failure, don't proceed # Set sensor_homing_failed flag to notify UI for user action logger.error("Sensor homing failed - neither axis homed. User action required.") state.sensor_homing_failed = True homing_complete.set() return else: # Send x0 y0 to zero both positions using send_grbl_coordinates logger.info(f"Zeroing positions with x0 y0 f{homing_speed}") # Run async function in new event loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: # Send G1 X0 Y0 F{homing_speed} result = loop.run_until_complete(send_grbl_coordinates(0, 0, homing_speed)) if not result: logger.error("Position zeroing failed - send_grbl_coordinates returned False") homing_complete.set() return logger.info("Position zeroing completed successfully") finally: loop.close() # Wait for device to reach idle state after zeroing movement logger.info("Waiting for device to reach idle state after zeroing...") idle_reached = check_idle() if not idle_reached: logger.error("Device did not reach idle state after zeroing") homing_complete.set() return # Set current position based on compass reference point (sensor mode only) offset_radians = math.radians(state.angular_homing_offset_degrees) state.current_theta = offset_radians state.current_rho = 0 logger.info(f"Sensor homing completed - theta set to {state.angular_homing_offset_degrees}° ({offset_radians:.3f} rad), rho=0") else: logger.info(f"Using crash homing mode at {homing_speed} mm/min") # Run async function in new event loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: if effective_table_type == 'dune_weaver_mini': result = loop.run_until_complete(send_grbl_coordinates(0, -30, homing_speed, home=True)) if not result: logger.error("Crash homing failed - send_grbl_coordinates returned False") homing_complete.set() return state.machine_y -= 30 else: result = loop.run_until_complete(send_grbl_coordinates(0, -22, homing_speed, home=True)) if not result: logger.error("Crash homing failed - send_grbl_coordinates returned False") homing_complete.set() return state.machine_y -= 22 finally: loop.close() # Wait for device to reach idle state after crash homing logger.info("Waiting for device to reach idle state after crash homing...") idle_reached = check_idle() if not idle_reached: logger.error("Device did not reach idle state after crash homing") homing_complete.set() return # Crash homing just sets theta and rho to 0 (no x0 y0 command) state.current_theta = 0 state.current_rho = 0 logger.info("Crash homing completed - theta=0, rho=0") # Update machine position from hardware after homing logger.info("Updating machine position after homing...") try: pos = get_machine_position() if pos and pos[0] is not None and pos[1] is not None: state.machine_x, state.machine_y = pos state.save() logger.info(f"Machine position updated after homing: X={state.machine_x}, Y={state.machine_y}") else: logger.warning("Could not get machine position after homing") except Exception as e: logger.error(f"Error updating machine position after homing: {e}") homing_success = True # Clear sensor_homing_failed flag on successful homing state.sensor_homing_failed = False homing_complete.set() except Exception as e: logger.error(f"Error during homing: {e}") homing_complete.set() # Start homing in a separate thread homing_thread = threading.Thread(target=home_internal) homing_thread.daemon = True homing_thread.start() # Wait for homing to complete or timeout if not homing_complete.wait(timeout): logger.error(f"Homing timeout after {timeout} seconds") # Try to stop any ongoing movement try: if state.conn and state.conn.is_connected(): state.conn.send("!\n") # Send feed hold time.sleep(0.1) state.conn.send("\x18\n") # Send reset except Exception as e: logger.error(f"Error stopping movement after timeout: {e}") return False if not homing_success: logger.error("Homing failed") return False logger.info("Homing completed successfully") return True def check_idle(): """ Continuously check if the device is idle (synchronous version). """ logger.info("Checking idle") while True: response = get_status_response() if response and "Idle" in response: logger.info("Device is idle") # Schedule async update_machine_position in the existing event loop try: # Try to schedule in existing event loop if available try: asyncio.get_running_loop() # Create a task but don't await it (fire and forget) asyncio.create_task(update_machine_position()) logger.debug("Scheduled machine position update task") except RuntimeError: # No event loop running, skip machine position update logger.debug("No event loop running, skipping machine position update") except Exception as e: logger.error(f"Error scheduling machine position update: {e}") return True time.sleep(1) async def check_idle_async(timeout: float = 30.0): """ Continuously check if the device is idle (async version). Args: timeout: Maximum seconds to wait for idle state (default 30s) Returns: True if device became idle, False if timeout or stop requested """ logger.info("Checking idle (async)") start_time = asyncio.get_event_loop().time() while True: # Check if stop was requested - exit early if state.stop_requested: logger.info("Stop requested during idle check, exiting early") return False # Check timeout elapsed = asyncio.get_event_loop().time() - start_time if elapsed > timeout: logger.warning(f"Timeout ({timeout}s) waiting for device idle state") return False response = await asyncio.to_thread(get_status_response) if response and "Idle" in response: logger.info("Device is idle") try: await update_machine_position() except Exception as e: logger.error(f"Error updating machine position: {e}") return True await asyncio.sleep(1) def is_machine_idle() -> bool: """ Single check to see if the machine is currently idle. Does not loop - returns immediately with current status. Returns: True if machine is idle, False otherwise """ if not state.conn or not state.conn.is_connected(): logger.debug("No connection - machine not idle") return False try: state.conn.send('?') response = state.conn.readline() if response and "Idle" in response: logger.debug("Machine status: Idle") return True else: logger.debug(f"Machine status: {response}") return False except Exception as e: logger.error(f"Error checking machine idle status: {e}") return False def get_machine_position(timeout=5): """ Query the device for its position. Supports both MPos and WPos formats (depends on GRBL $10 setting). """ start_time = time.time() while time.time() - start_time < timeout: try: state.conn.send('?') response = state.conn.readline() logger.debug(f"Raw status response: {response}") # Accept either MPos or WPos format if "MPos" in response or "WPos" in response: pos = parse_machine_position(response) if pos: machine_x, machine_y = pos logger.debug(f"Machine position: X={machine_x}, Y={machine_y}") return machine_x, machine_y except Exception as e: logger.error(f"Error getting machine position: {e}") return time.sleep(0.1) logger.warning("Timeout reached waiting for machine position") return None, None async def update_machine_position(): if (state.conn.is_connected() if state.conn else False): try: logger.info('Saving machine position') state.machine_x, state.machine_y = await asyncio.to_thread(get_machine_position) await asyncio.to_thread(state.save) logger.info(f'Machine position saved: {state.machine_x}, {state.machine_y}') except Exception as e: logger.error(f"Error updating machine position: {e}") def perform_soft_reset_sync(max_retries: int = 5): """ Synchronous version of soft reset for use during device initialization. Supports both FluidNC ($Bye) and GRBL (Ctrl+X / 0x18) firmware. Triggers a software reset which clears position counters to 0. This is more reliable than G92 which only sets a work coordinate offset without changing the actual machine position (MPos). IMPORTANT: Position is only reset to (0,0) if confirmation is received. This prevents position drift from accumulating over long operation periods. Uses exponential backoff for retries: - Attempt 1: 5s timeout - Attempt 2: 7.5s timeout, 1s delay before retry - Attempt 3: 11s timeout, 2s delay before retry - Attempt 4: 17s timeout, 4s delay before retry - Attempt 5: 25s timeout, 8s delay before retry Args: max_retries: Maximum number of reset attempts (default 5) Returns: True if reset confirmed, False if all attempts failed """ if not state.conn or not state.conn.is_connected(): logger.warning("Cannot perform soft reset: no active connection") return False try: # Detect firmware type to use appropriate reset command firmware_type, version = _detect_firmware() logger.info(f"Detected firmware: {firmware_type} {version or ''}") logger.info(f"Performing soft reset (was: X={state.machine_x:.2f}, Y={state.machine_y:.2f})") for attempt in range(max_retries): # Exponential backoff: 5s * 1.5^attempt → 5s, 7.5s, 11s, 17s, 25s timeout = 5.0 * (1.5 ** attempt) logger.info(f"Reset attempt {attempt + 1}/{max_retries} (timeout: {timeout:.1f}s)") # Clear any pending data first if isinstance(state.conn, SerialConnection): state.conn.reset_input_buffer() # Send appropriate reset command based on firmware if firmware_type == 'fluidnc': # FluidNC uses $Bye for soft reset state.conn.send('$Bye\n') logger.info(f"$Bye sent to {state.port}") else: # GRBL uses Ctrl+X (0x18) for soft reset state.conn.send('\x18') logger.info(f"Ctrl+X (0x18) sent to {state.port}") # Wait for controller to fully restart # FluidNC sequence: [MSG:INFO: Restarting] -> ... -> "Grbl 3.9 [FluidNC...]" # GRBL sequence: "Grbl 1.1h ['$' for help]" start_time = time.time() reset_confirmed = False while time.time() - start_time < timeout: try: response = state.conn.readline() if response: logger.debug(f"Reset response: {response}") # Wait for the "Grbl" startup banner - this means fully ready if response.startswith("Grbl") or "fluidnc" in response.lower(): reset_confirmed = True logger.info(f"Controller restart complete: {response}") break except Exception: pass time.sleep(0.05) if reset_confirmed: # Small delay to let controller fully stabilize time.sleep(0.2) # Unlock controller in case it's in alarm state after reset logger.info("Sending $X to unlock controller after reset") state.conn.send("$X\n") # Wait for ok response unlock_start = time.time() while time.time() - unlock_start < 1.0: try: response = state.conn.readline() if response: logger.debug(f"$X response: {response}") if response.lower() == "ok": logger.info("Controller unlocked") break except Exception: pass time.sleep(0.05) # Only reset state positions when confirmation received state.machine_x = 0.0 state.machine_y = 0.0 reset_cmd = '$Bye' if firmware_type == 'fluidnc' else 'Ctrl+X' logger.info(f"Machine position reset to 0 via {reset_cmd} soft reset") # Save the reset position state.save() logger.info(f"Machine position saved: {state.machine_x}, {state.machine_y}") return True # Retry after failed attempt with exponential backoff delay if attempt < max_retries - 1: backoff_delay = 1.0 * (2 ** attempt) # 1s, 2s, 4s, 8s logger.warning(f"Reset attempt {attempt + 1}/{max_retries} failed, retrying in {backoff_delay:.0f}s...") time.sleep(backoff_delay) # All attempts failed - DO NOT reset position to prevent drift logger.error( f"All {max_retries} reset attempts failed - no confirmation received. " f"Position NOT reset (still: X={state.machine_x:.2f}, Y={state.machine_y:.2f}). " "This may indicate communication issues or controller not responding." ) return False except Exception as e: logger.error(f"Error performing soft reset: {e}") return False async def perform_soft_reset(): """ Async version of soft reset for use in async contexts (API endpoints, pattern manager). Wraps the sync version in a thread to avoid blocking the event loop. """ return await asyncio.to_thread(perform_soft_reset_sync) def reset_work_coordinates(): """ Clear all work coordinate offsets for a clean start. This ensures the work coordinate system starts fresh on each connection, preventing accumulated offsets from previous sessions from affecting pattern execution. G92.1: Clears any G92 offset (resets work coordinates to machine coordinates) G10 L2 P1 X0 Y0: Sets G54 work offset to 0 (for completeness) """ if not state.conn or not state.conn.is_connected(): logger.warning("Cannot reset work coordinates: no active connection") return False try: logger.info("Resetting work coordinate offsets") # Clear any stale input data first try: while state.conn.in_waiting() > 0: state.conn.readline() except Exception: pass # Clear G92 offset state.conn.send("G92.1\n") time.sleep(0.2) # Wait for 'ok' response start_time = time.time() got_ok = False while time.time() - start_time < 2.0: if state.conn.in_waiting() > 0: response = state.conn.readline() if response: logger.debug(f"G92.1 response: {response}") if response.lower() == "ok": got_ok = True break elif "error" in response.lower(): logger.warning(f"G92.1 error: {response}") break time.sleep(0.05) if not got_ok: logger.warning("Did not receive 'ok' for G92.1, continuing anyway") # Set G54 offset to 0 (optional, for completeness) state.conn.send("G10 L2 P1 X0 Y0\n") time.sleep(0.2) # Wait for 'ok' response start_time = time.time() got_ok = False while time.time() - start_time < 2.0: if state.conn.in_waiting() > 0: response = state.conn.readline() if response: logger.debug(f"G10 response: {response}") if response.lower() == "ok": got_ok = True break elif "error" in response.lower(): logger.warning(f"G10 error: {response}") break time.sleep(0.05) if not got_ok: logger.warning("Did not receive 'ok' for G10 L2 P1 X0 Y0, continuing anyway") # Reset machine_x to 0 since work coordinates now start at 0 state.machine_x = 0.0 logger.info("Work coordinates reset complete") return True except Exception as e: logger.error(f"Error resetting work coordinates: {e}") return False def restart_connection(homing=False): """ Restart the connection. If a connection exists, close it and attempt to establish a new one. It will try to connect via serial first (if available), otherwise it will fall back to websocket. The new connection is saved to state.conn. Returns: True if the connection was restarted successfully, False otherwise. """ try: if (state.conn.is_connected() if state.conn else False): logger.info("Closing current connection...") state.conn.close() except Exception as e: logger.error(f"Error while closing connection: {e}") # Clear the connection reference. state.conn = None logger.info("Attempting to restart connection...") try: connect_device(homing) # This will set state.conn appropriately. if (state.conn.is_connected() if state.conn else False): logger.info("Connection restarted successfully.") return True else: logger.error("Failed to restart connection.") return False except Exception as e: logger.error(f"Error restarting connection: {e}") return False