arduino_code.ino 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379
  1. #include <AccelStepper.h>
  2. #include <MultiStepper.h>
  3. #include <math.h> // For M_PI and mathematical operations
  4. #define rotInterfaceType AccelStepper::DRIVER
  5. #define inOutInterfaceType AccelStepper::DRIVER
  6. #define stepPin_rot 2
  7. #define dirPin_rot 5
  8. #define stepPin_InOut 3
  9. #define dirPin_InOut 6
  10. #define rot_total_steps 16000.0
  11. #define inOut_total_steps 5760.0
  12. #define gearRatio 10
  13. #define BUFFER_SIZE 10 // Maximum number of theta-rho pairs in a batch
  14. #define buttonPin 11 // Z- signal pin on the CNC shield
  15. #define pot1 A1 // Potentiometer 1, Abort pin on the CNC shield
  16. #define pot2 A0 // Potentiometer 2, Hold pint on the CNC shield
  17. #define MODE_APP 0
  18. #define MODE_SPIROGRAPH 1
  19. // Create stepper motor objects
  20. AccelStepper rotStepper(rotInterfaceType, stepPin_rot, dirPin_rot);
  21. AccelStepper inOutStepper(inOutInterfaceType, stepPin_InOut, dirPin_InOut);
  22. // Create a MultiStepper object
  23. MultiStepper multiStepper;
  24. // Buffer for storing theta-rho pairs
  25. float buffer[BUFFER_SIZE][2]; // Store theta, rho pairs
  26. int bufferCount = 0; // Number of pairs in the buffer
  27. bool batchComplete = false;
  28. // Track the current position in polar coordinates
  29. float currentTheta = 0.0; // Current theta in radians
  30. float currentRho = 0.0; // Current rho (0 to 1)
  31. bool isFirstCoordinates = true;
  32. float totalRevolutions = 0.0; // Tracks cumulative revolutions
  33. float maxSpeed = 5000;
  34. float maxAcceleration = 5000;
  35. long interpolationResolution = 0.001;
  36. float userDefinedSpeed = maxSpeed; // Store user-defined speed
  37. // Running Mode
  38. int currentMode = MODE_APP; // Default mode is app mode.
  39. void setup()
  40. {
  41. // Set maximum speed and acceleration
  42. rotStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  43. rotStepper.setAcceleration(maxAcceleration); // Adjust as needed
  44. inOutStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  45. inOutStepper.setAcceleration(maxAcceleration); // Adjust as needed
  46. // Add steppers to MultiStepper
  47. multiStepper.addStepper(rotStepper);
  48. multiStepper.addStepper(inOutStepper);
  49. // Configure the buttons and potentiometers for Spirograph mode
  50. pinMode(buttonPin, INPUT_PULLUP); // Configure button pin with internal pull-up
  51. pinMode(A0, INPUT); // Potentiometer 1 input
  52. pinMode(A1, INPUT); // Potentiometer 2 input
  53. // Initialize serial communication
  54. Serial.begin(115200);
  55. Serial.println("Table: Dune Weaver");
  56. Serial.println("Drivers: DRV8825");
  57. Serial.println("Version: 1.4.0");
  58. Serial.println("R");
  59. homing();
  60. }
  61. void resetTheta()
  62. {
  63. isFirstCoordinates = true; // Set flag to skip interpolation for the next movement
  64. Serial.println("THETA_RESET"); // Notify Python
  65. }
  66. void loop() {
  67. updateModeSwitch(); // Check and handle mode switching
  68. // Call the appropriate mode function based on the current mode
  69. if (currentMode == MODE_SPIROGRAPH) {
  70. spirographMode();
  71. } else if (currentMode == MODE_APP) {
  72. appMode();
  73. }
  74. }
  75. void updateModeSwitch() {
  76. // Read the current state of the latching switch
  77. bool currentSwitchState = digitalRead(buttonPin);
  78. int newMode = currentSwitchState == LOW ? MODE_SPIROGRAPH : MODE_APP;
  79. if (newMode != currentMode) {
  80. handleModeChange(newMode); // Handle mode-specific transitions
  81. currentMode = newMode; // Update the current mode
  82. }
  83. }
  84. void handleModeChange(int newMode) {
  85. // Print mode switch information
  86. if (newMode == MODE_SPIROGRAPH) {
  87. Serial.println("Spirograph Mode Active");
  88. rotStepper.setMaxSpeed(userDefinedSpeed * 0.5); // Use 50% of user-defined speed
  89. inOutStepper.setMaxSpeed(userDefinedSpeed * 0.5);
  90. } else if (newMode == MODE_APP) {
  91. Serial.println("App Mode Active");
  92. rotStepper.setMaxSpeed(userDefinedSpeed); // Restore user-defined speed
  93. inOutStepper.setMaxSpeed(userDefinedSpeed);
  94. resetTheta();
  95. }
  96. movePolar(currentTheta, 0); // Move to the center
  97. }
  98. void spirographMode() {
  99. static float currentFrequency = 2.95; // Track the current frequency (default value)
  100. static float phaseShift = 0.0; // Track the phase shift for smooth transitions
  101. // Read potentiometer for frequency adjustment
  102. int pot1Value = analogRead(pot1);
  103. float newFrequency = mapFloat(pot1Value, 0, 1023, 0.5, 6); // Map to range
  104. newFrequency = round(newFrequency * 10) / 10.0; // Round to one decimal place
  105. // Force the value to x.95 or x.10 to have a slight variation each revolution
  106. if (fmod(newFrequency, 1.0) >= 0.5) {
  107. newFrequency = floor(newFrequency) + 0.95; // Round up to x.95
  108. } else {
  109. newFrequency = floor(newFrequency) + 0.10; // Round down to x.10
  110. }
  111. // Adjust phase shift if frequency changes
  112. if (newFrequency != currentFrequency) {
  113. phaseShift += currentTheta * (currentFrequency - newFrequency);
  114. currentFrequency = newFrequency; // Update the current frequency
  115. }
  116. // Read variation knob to adjust the minimum rho
  117. int pot2Value = analogRead(pot2);
  118. float minRho = round(mapFloat(pot2Value, 0, 1023, 0, 0.5) * 20) / 20.0; // Minimum rho in steps of 0.05
  119. // Calculate amplitude and offset for the sine wave
  120. float amplitude = (1.0 - minRho) / 2.0; // Half of the oscillation range
  121. float offset = minRho + amplitude; // Center the wave within the range [minRho, 1]
  122. // Calculate the next target theta
  123. float stepSize = maxSpeed * (2 * M_PI / rot_total_steps) / 10; // Smaller steps for finer control
  124. float nextTheta = currentTheta + stepSize;
  125. // Count total revolutions
  126. totalRevolutions = (nextTheta / (2 * M_PI));
  127. // Calculate rho using the adjusted sine wave with phase shift
  128. currentRho = offset + amplitude * cos((currentTheta * currentFrequency) + phaseShift);
  129. float nextRho = offset + amplitude * cos((nextTheta * currentFrequency) + phaseShift);
  130. // Move the steppers to the calculated position
  131. movePolar(nextTheta, constrain(nextRho, 0, 1));
  132. // Update the current theta to the new position
  133. currentTheta = nextTheta;
  134. }
  135. float mapFloat(long x, long inMin, long inMax, float outMin, float outMax) {
  136. if (inMax == inMin) {
  137. Serial.println("Error: mapFloat division by zero");
  138. return outMin; // Return the minimum output value as a fallback
  139. }
  140. return (float)(x - inMin) * (outMax - outMin) / (float)(inMax - inMin) + outMin;
  141. }
  142. void appMode()
  143. {
  144. // Check for incoming serial commands or theta-rho pairs
  145. if (Serial.available() > 0)
  146. {
  147. String input = Serial.readStringUntil('\n');
  148. // Ignore invalid messages
  149. if (input != "HOME" && input != "RESET_THETA" && !input.startsWith("SET_SPEED") && !input.endsWith(";"))
  150. {
  151. Serial.print("IGNORED: ");
  152. Serial.println(input);
  153. return;
  154. }
  155. if (input == "RESET_THETA")
  156. {
  157. resetTheta(); // Reset currentTheta
  158. Serial.println("THETA_RESET"); // Notify Python
  159. Serial.println("READY");
  160. return;
  161. }
  162. if (input == "HOME")
  163. {
  164. homing();
  165. return;
  166. }
  167. // Example: The user calls "SET_SPEED 60" => 60% of maxSpeed
  168. if (input.startsWith("SET_SPEED"))
  169. {
  170. // Parse out the speed value from the command string
  171. int spaceIndex = input.indexOf(' ');
  172. if (spaceIndex != -1)
  173. {
  174. String speedStr = input.substring(spaceIndex + 1);
  175. float speedPercentage = speedStr.toFloat();
  176. // Make sure the percentage is valid
  177. if (speedPercentage >= 1.0 && speedPercentage <= 100.0)
  178. {
  179. // Convert percentage to actual speed
  180. long newSpeed = (speedPercentage / 100.0) * maxSpeed;
  181. userDefinedSpeed = newSpeed;
  182. // Set the stepper speeds
  183. rotStepper.setMaxSpeed(newSpeed);
  184. inOutStepper.setMaxSpeed(newSpeed);
  185. Serial.println("SPEED_SET");
  186. Serial.println("R");
  187. }
  188. else
  189. {
  190. Serial.println("INVALID_SPEED");
  191. }
  192. }
  193. else
  194. {
  195. Serial.println("INVALID_COMMAND");
  196. }
  197. return;
  198. }
  199. // If not a command, assume it's a batch of theta-rho pairs
  200. if (!batchComplete)
  201. {
  202. int pairIndex = 0;
  203. int startIdx = 0;
  204. // Split the batch line into individual theta-rho pairs
  205. while (pairIndex < BUFFER_SIZE)
  206. {
  207. int endIdx = input.indexOf(";", startIdx);
  208. if (endIdx == -1)
  209. break; // No more pairs in the line
  210. String pair = input.substring(startIdx, endIdx);
  211. int commaIndex = pair.indexOf(',');
  212. // Parse theta and rho values
  213. float theta = pair.substring(0, commaIndex).toFloat(); // Theta in radians
  214. float rho = pair.substring(commaIndex + 1).toFloat(); // Rho (0 to 1)
  215. buffer[pairIndex][0] = theta;
  216. buffer[pairIndex][1] = rho;
  217. pairIndex++;
  218. startIdx = endIdx + 1; // Move to next pair
  219. }
  220. bufferCount = pairIndex;
  221. batchComplete = true;
  222. }
  223. }
  224. // Process the buffer if a batch is ready
  225. if (batchComplete && bufferCount > 0)
  226. {
  227. // Start interpolation from the current position
  228. float startTheta = currentTheta;
  229. float startRho = currentRho;
  230. for (int i = 0; i < bufferCount; i++)
  231. {
  232. if (isFirstCoordinates)
  233. {
  234. // Directly move to the first coordinate of the new pattern
  235. long initialRotSteps = buffer[0][0] * (rot_total_steps / (2.0 * M_PI));
  236. rotStepper.setCurrentPosition(initialRotSteps);
  237. inOutStepper.setCurrentPosition(inOutStepper.currentPosition() - totalRevolutions * rot_total_steps / gearRatio);
  238. currentTheta = buffer[0][0];
  239. totalRevolutions = 0;
  240. isFirstCoordinates = false; // Reset the flag after the first movement
  241. movePolar(buffer[0][0], buffer[0][1]);
  242. }
  243. else
  244. {
  245. // Use interpolation for subsequent movements
  246. interpolatePath(
  247. startTheta, startRho,
  248. buffer[i][0], buffer[i][1],
  249. interpolationResolution
  250. );
  251. }
  252. // Update the starting point for the next segment
  253. startTheta = buffer[i][0];
  254. startRho = buffer[i][1];
  255. }
  256. batchComplete = false; // Reset batch flag
  257. bufferCount = 0; // Clear buffer
  258. Serial.println("R");
  259. }
  260. }
  261. void homing()
  262. {
  263. Serial.println("HOMING");
  264. // Move inOutStepper inward for homing
  265. inOutStepper.setSpeed(-maxSpeed); // Adjust speed for homing
  266. while (true)
  267. {
  268. inOutStepper.runSpeed();
  269. if (inOutStepper.currentPosition() <= -inOut_total_steps * 1.1)
  270. { // Adjust distance for homing
  271. break;
  272. }
  273. }
  274. inOutStepper.setCurrentPosition(0); // Set home position
  275. currentTheta = 0.0; // Reset polar coordinates
  276. currentRho = 0.0;
  277. Serial.println("HOMED");
  278. }
  279. void movePolar(float theta, float rho)
  280. {
  281. // Convert polar coordinates to motor steps
  282. long rotSteps = theta * (rot_total_steps / (2.0 * M_PI)); // Steps for rot axis
  283. long inOutSteps = rho * inOut_total_steps; // Steps for in-out axis
  284. // Calculate offset for inOut axis
  285. float revolutions = theta / (2.0 * M_PI); // Fractional revolutions (can be positive or negative)
  286. long offsetSteps = revolutions * rot_total_steps / gearRatio; // 1600 steps inward or outward per revolution
  287. // Update the total revolutions to keep track of the offset history
  288. totalRevolutions += (theta - currentTheta) / (2.0 * M_PI);
  289. // Apply the offset to the inout axis
  290. if (!isFirstCoordinates) {
  291. inOutSteps -= offsetSteps;
  292. }
  293. // Define target positions for both motors
  294. long targetPositions[2];
  295. targetPositions[0] = rotSteps;
  296. targetPositions[1] = inOutSteps;
  297. // Move both motors synchronously
  298. multiStepper.moveTo(targetPositions);
  299. multiStepper.runSpeedToPosition(); // Blocking call
  300. // Update the current coordinates
  301. currentTheta = theta;
  302. currentRho = rho;
  303. }
  304. void interpolatePath(float startTheta, float startRho, float endTheta, float endRho, float stepSize)
  305. {
  306. // Calculate the total distance in the polar coordinate system
  307. float distance = sqrt(pow(endTheta - startTheta, 2) + pow(endRho - startRho, 2));
  308. int numSteps = max(1, (int)(distance / stepSize)); // Ensure at least one step
  309. for (int step = 0; step <= numSteps; step++)
  310. {
  311. float t = (float)step / numSteps; // Interpolation factor (0 to 1)
  312. float interpolatedTheta = startTheta + t * (endTheta - startTheta);
  313. float interpolatedRho = startRho + t * (endRho - startRho);
  314. // Move to the interpolated theta-rho
  315. movePolar(interpolatedTheta, interpolatedRho);
  316. }
  317. }