arduino_code.ino 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. #include <AccelStepper.h>
  2. #include <MultiStepper.h>
  3. #include <math.h> // For M_PI and mathematical operations
  4. #define rotInterfaceType AccelStepper::DRIVER
  5. #define inOutInterfaceType AccelStepper::DRIVER
  6. #define stepPin_rot 2
  7. #define dirPin_rot 5
  8. #define stepPin_InOut 3
  9. #define dirPin_InOut 6
  10. #define rot_total_steps 16000.0
  11. #define inOut_total_steps 5760.0
  12. #define gearRatio 10
  13. #define BUFFER_SIZE 10 // Maximum number of theta-rho pairs in a batch
  14. #define buttonPin 11 // Z- signal pin on the CNC shield
  15. #define pot1 A1 // Potentiometer 1, Abort pin on the CNC shield
  16. #define pot2 A0 // Potentiometer 2, Hold pint on the CNC shield
  17. #define MODE_APP 0
  18. #define MODE_SPIROGRAPH 1
  19. // Create stepper motor objects
  20. AccelStepper rotStepper(rotInterfaceType, stepPin_rot, dirPin_rot);
  21. AccelStepper inOutStepper(inOutInterfaceType, stepPin_InOut, dirPin_InOut);
  22. // Create a MultiStepper object
  23. MultiStepper multiStepper;
  24. // Buffer for storing theta-rho pairs
  25. float buffer[BUFFER_SIZE][2]; // Store theta, rho pairs
  26. int bufferCount = 0; // Number of pairs in the buffer
  27. bool batchComplete = false;
  28. // Track the current position in polar coordinates
  29. float currentTheta = 0.0; // Current theta in radians
  30. float currentRho = 0.0; // Current rho (0 to 1)
  31. bool isFirstCoordinates = true;
  32. float totalRevolutions = 0.0; // Tracks cumulative revolutions
  33. float maxSpeed = 5000;
  34. float maxAcceleration = 5000;
  35. long interpolationResolution = 0.001;
  36. float userDefinedSpeed = maxSpeed; // Store user-defined speed
  37. // Running Mode
  38. int currentMode = MODE_APP; // Default mode is app mode.
  39. void setup()
  40. {
  41. // Set maximum speed and acceleration
  42. rotStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  43. rotStepper.setAcceleration(maxAcceleration); // Adjust as needed
  44. inOutStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  45. inOutStepper.setAcceleration(maxAcceleration); // Adjust as needed
  46. // Add steppers to MultiStepper
  47. multiStepper.addStepper(rotStepper);
  48. multiStepper.addStepper(inOutStepper);
  49. // Configure the buttons and potentiometers for Spirograph mode
  50. pinMode(buttonPin, INPUT_PULLUP); // Configure button pin with internal pull-up
  51. pinMode(A0, INPUT); // Potentiometer 1 input
  52. pinMode(A1, INPUT); // Potentiometer 2 input
  53. // Initialize serial communication
  54. Serial.begin(115200);
  55. Serial.println("R");
  56. homing();
  57. }
  58. void resetTheta()
  59. {
  60. isFirstCoordinates = true; // Set flag to skip interpolation for the next movement
  61. Serial.println("THETA_RESET"); // Notify Python
  62. }
  63. void loop() {
  64. updateModeSwitch(); // Check and handle mode switching
  65. // Call the appropriate mode function based on the current mode
  66. if (currentMode == MODE_SPIROGRAPH) {
  67. spirographMode();
  68. } else if (currentMode == MODE_APP) {
  69. appMode();
  70. }
  71. }
  72. void updateModeSwitch() {
  73. // Read the current state of the latching switch
  74. bool currentSwitchState = digitalRead(buttonPin);
  75. int newMode = currentSwitchState == LOW ? MODE_SPIROGRAPH : MODE_APP;
  76. if (newMode != currentMode) {
  77. handleModeChange(newMode); // Handle mode-specific transitions
  78. currentMode = newMode; // Update the current mode
  79. }
  80. }
  81. void handleModeChange(int newMode) {
  82. // Print mode switch information
  83. if (newMode == MODE_SPIROGRAPH) {
  84. Serial.println("Spirograph Mode Active");
  85. rotStepper.setMaxSpeed(userDefinedSpeed * 0.5); // Use 50% of user-defined speed
  86. inOutStepper.setMaxSpeed(userDefinedSpeed * 0.5);
  87. } else if (newMode == MODE_APP) {
  88. Serial.println("App Mode Active");
  89. rotStepper.setMaxSpeed(userDefinedSpeed); // Restore user-defined speed
  90. inOutStepper.setMaxSpeed(userDefinedSpeed);
  91. resetTheta();
  92. }
  93. movePolar(currentTheta, 0); // Move to the center
  94. }
  95. void spirographMode() {
  96. static float currentFrequency = 2.95; // Track the current frequency (default value)
  97. static float phaseShift = 0.0; // Track the phase shift for smooth transitions
  98. // Read potentiometer for frequency adjustment
  99. int pot1Value = analogRead(pot1);
  100. float newFrequency = mapFloat(pot1Value, 0, 1023, 0.5, 6); // Map to range
  101. newFrequency = round(newFrequency * 10) / 10.0; // Round to one decimal place
  102. // Force the value to x.95 or x.10 to have a slight variation each revolution
  103. if (fmod(newFrequency, 1.0) >= 0.5) {
  104. newFrequency = floor(newFrequency) + 0.95; // Round up to x.95
  105. } else {
  106. newFrequency = floor(newFrequency) + 0.10; // Round down to x.10
  107. }
  108. // Adjust phase shift if frequency changes
  109. if (newFrequency != currentFrequency) {
  110. phaseShift += currentTheta * (currentFrequency - newFrequency);
  111. currentFrequency = newFrequency; // Update the current frequency
  112. }
  113. // Read variation knob to adjust the minimum rho
  114. int pot2Value = analogRead(pot2);
  115. float minRho = round(mapFloat(pot2Value, 0, 1023, 0, 0.5) * 20) / 20.0; // Minimum rho in steps of 0.05
  116. // Calculate amplitude and offset for the sine wave
  117. float amplitude = (1.0 - minRho) / 2.0; // Half of the oscillation range
  118. float offset = minRho + amplitude; // Center the wave within the range [minRho, 1]
  119. // Calculate the next target theta
  120. float stepSize = maxSpeed * (2 * M_PI / rot_total_steps) / 10; // Smaller steps for finer control
  121. float nextTheta = currentTheta + stepSize;
  122. // Count total revolutions
  123. totalRevolutions = (nextTheta / (2 * M_PI));
  124. // Calculate rho using the adjusted sine wave with phase shift
  125. currentRho = offset + amplitude * cos((currentTheta * currentFrequency) + phaseShift);
  126. float nextRho = offset + amplitude * cos((nextTheta * currentFrequency) + phaseShift);
  127. // Move the steppers to the calculated position
  128. movePolar(nextTheta, constrain(nextRho, 0, 1));
  129. // Update the current theta to the new position
  130. currentTheta = nextTheta;
  131. }
  132. float mapFloat(long x, long inMin, long inMax, float outMin, float outMax) {
  133. if (inMax == inMin) {
  134. Serial.println("Error: mapFloat division by zero");
  135. return outMin; // Return the minimum output value as a fallback
  136. }
  137. return (float)(x - inMin) * (outMax - outMin) / (float)(inMax - inMin) + outMin;
  138. }
  139. void appMode()
  140. {
  141. // Check for incoming serial commands or theta-rho pairs
  142. if (Serial.available() > 0)
  143. {
  144. String input = Serial.readStringUntil('\n');
  145. // Ignore invalid messages
  146. if (input != "HOME" && input != "RESET_THETA" && !input.endsWith(";"))
  147. {
  148. Serial.println("IGNORED");
  149. return;
  150. }
  151. if (input.startsWith("SET_SPEED"))
  152. {
  153. // Parse and set the speed
  154. int spaceIndex = input.indexOf(' ');
  155. if (spaceIndex != -1)
  156. {
  157. String speedStr = input.substring(spaceIndex + 1);
  158. float speed = speedStr.toFloat();
  159. if (speed > 0) // Ensure valid speed
  160. {
  161. userDefinedSpeed = speed;
  162. rotStepper.setMaxSpeed(speed);
  163. inOutStepper.setMaxSpeed(speed);
  164. Serial.println("SPEED_SET");
  165. Serial.println("R");
  166. }
  167. else
  168. {
  169. Serial.println("INVALID_SPEED");
  170. }
  171. }
  172. else
  173. {
  174. Serial.println("INVALID_COMMAND");
  175. }
  176. return;
  177. }
  178. if (input == "HOME")
  179. {
  180. homing();
  181. return;
  182. }
  183. if (input == "RESET_THETA")
  184. {
  185. resetTheta(); // Reset currentTheta
  186. Serial.println("THETA_RESET"); // Notify Python
  187. Serial.println("R");
  188. return;
  189. }
  190. // If not a command, assume it's a batch of theta-rho pairs
  191. if (!batchComplete)
  192. {
  193. int pairIndex = 0;
  194. int startIdx = 0;
  195. // Split the batch line into individual theta-rho pairs
  196. while (pairIndex < BUFFER_SIZE)
  197. {
  198. int endIdx = input.indexOf(";", startIdx);
  199. if (endIdx == -1)
  200. break; // No more pairs in the line
  201. String pair = input.substring(startIdx, endIdx);
  202. int commaIndex = pair.indexOf(',');
  203. // Parse theta and rho values
  204. float theta = pair.substring(0, commaIndex).toFloat(); // Theta in radians
  205. float rho = pair.substring(commaIndex + 1).toFloat(); // Rho (0 to 1)
  206. buffer[pairIndex][0] = theta;
  207. buffer[pairIndex][1] = rho;
  208. pairIndex++;
  209. startIdx = endIdx + 1; // Move to next pair
  210. }
  211. bufferCount = pairIndex;
  212. batchComplete = true;
  213. }
  214. }
  215. // Process the buffer if a batch is ready
  216. if (batchComplete && bufferCount > 0)
  217. {
  218. // Start interpolation from the current position
  219. float startTheta = currentTheta;
  220. float startRho = currentRho;
  221. for (int i = 0; i < bufferCount; i++)
  222. {
  223. if (isFirstCoordinates)
  224. {
  225. // Directly move to the first coordinate of the new pattern
  226. long initialRotSteps = buffer[0][0] * (rot_total_steps / (2.0 * M_PI));
  227. rotStepper.setCurrentPosition(initialRotSteps);
  228. inOutStepper.setCurrentPosition(inOutStepper.currentPosition() - totalRevolutions * rot_total_steps / gearRatio);
  229. currentTheta = buffer[0][0];
  230. totalRevolutions = 0;
  231. isFirstCoordinates = false; // Reset the flag after the first movement
  232. movePolar(buffer[0][0], buffer[0][1]);
  233. }
  234. else
  235. {
  236. // Use interpolation for subsequent movements
  237. interpolatePath(
  238. startTheta, startRho,
  239. buffer[i][0], buffer[i][1],
  240. interpolationResolution
  241. );
  242. }
  243. // Update the starting point for the next segment
  244. startTheta = buffer[i][0];
  245. startRho = buffer[i][1];
  246. }
  247. batchComplete = false; // Reset batch flag
  248. bufferCount = 0; // Clear buffer
  249. Serial.println("R");
  250. }
  251. }
  252. void homing()
  253. {
  254. Serial.println("HOMING");
  255. // Move inOutStepper inward for homing
  256. inOutStepper.setSpeed(-maxSpeed); // Adjust speed for homing
  257. while (true)
  258. {
  259. inOutStepper.runSpeed();
  260. if (inOutStepper.currentPosition() <= -inOut_total_steps * 1.1)
  261. { // Adjust distance for homing
  262. break;
  263. }
  264. }
  265. inOutStepper.setCurrentPosition(0); // Set home position
  266. currentTheta = 0.0; // Reset polar coordinates
  267. currentRho = 0.0;
  268. Serial.println("HOMED");
  269. }
  270. void movePolar(float theta, float rho)
  271. {
  272. // Convert polar coordinates to motor steps
  273. long rotSteps = theta * (rot_total_steps / (2.0 * M_PI)); // Steps for rot axis
  274. long inOutSteps = rho * inOut_total_steps; // Steps for in-out axis
  275. // Calculate offset for inOut axis
  276. float revolutions = theta / (2.0 * M_PI); // Fractional revolutions (can be positive or negative)
  277. long offsetSteps = revolutions * rot_total_steps / gearRatio; // 1600 steps inward or outward per revolution
  278. // Update the total revolutions to keep track of the offset history
  279. totalRevolutions += (theta - currentTheta) / (2.0 * M_PI);
  280. // Apply the offset to the inout axis
  281. if (!isFirstCoordinates) {
  282. inOutSteps -= offsetSteps;
  283. }
  284. // Define target positions for both motors
  285. long targetPositions[2];
  286. targetPositions[0] = rotSteps;
  287. targetPositions[1] = inOutSteps;
  288. // Move both motors synchronously
  289. multiStepper.moveTo(targetPositions);
  290. multiStepper.runSpeedToPosition(); // Blocking call
  291. // Update the current coordinates
  292. currentTheta = theta;
  293. currentRho = rho;
  294. }
  295. void interpolatePath(float startTheta, float startRho, float endTheta, float endRho, float stepSize)
  296. {
  297. // Calculate the total distance in the polar coordinate system
  298. float distance = sqrt(pow(endTheta - startTheta, 2) + pow(endRho - startRho, 2));
  299. int numSteps = max(1, (int)(distance / stepSize)); // Ensure at least one step
  300. for (int step = 0; step <= numSteps; step++)
  301. {
  302. float t = (float)step / numSteps; // Interpolation factor (0 to 1)
  303. float interpolatedTheta = startTheta + t * (endTheta - startTheta);
  304. float interpolatedRho = startRho + t * (endRho - startRho);
  305. // Move to the interpolated theta-rho
  306. movePolar(interpolatedTheta, interpolatedRho);
  307. }
  308. }