esp32.ino 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. #include <AccelStepper.h>
  2. #include <MultiStepper.h>
  3. #include <math.h> // For M_PI and mathematical operations
  4. #define rotInterfaceType AccelStepper::DRIVER
  5. #define inOutInterfaceType AccelStepper::DRIVER
  6. #define ROT_PIN1 14
  7. #define ROT_PIN2 12
  8. #define ROT_PIN3 26
  9. #define ROT_PIN4 27
  10. #define INOUT_PIN1 16
  11. #define INOUT_PIN2 17
  12. #define INOUT_PIN3 18
  13. #define INOUT_PIN4 19
  14. #define rot_total_steps 12800
  15. #define inOut_total_steps 4642
  16. // #define inOut_total_steps 4660
  17. const double gearRatio = 100.0f / 16.0f;
  18. #define BUFFER_SIZE 10 // Maximum number of theta-rho pairs in a batch
  19. // Create stepper motor objects
  20. AccelStepper rotStepper(AccelStepper::FULL4WIRE, ROT_PIN1, ROT_PIN3, ROT_PIN2, ROT_PIN4); // Rot axis
  21. AccelStepper inOutStepper(AccelStepper::FULL4WIRE, INOUT_PIN1, INOUT_PIN3, INOUT_PIN2, INOUT_PIN4); // In-out axis
  22. // Create a MultiStepper object
  23. MultiStepper multiStepper;
  24. // Buffer for storing theta-rho pairs
  25. double buffer[BUFFER_SIZE][2]; // Store theta, rho pairs
  26. int bufferCount = 0; // Number of pairs in the buffer
  27. bool batchComplete = false;
  28. // Track the current position in polar coordinates
  29. double currentTheta = 0.0; // Current theta in radians
  30. double currentRho = 0.0; // Current rho (0 to 1)
  31. bool isFirstCoordinates = true;
  32. double totalRevolutions = 0.0; // Tracks cumulative revolutions
  33. double maxSpeed = 500;
  34. double maxAcceleration = 5000;
  35. double subSteps = 1;
  36. // FIRMWARE VERSION
  37. const char* firmwareVersion = "1.4.0";
  38. const char* motorType = "esp32";
  39. int modulus(int x, int y) {
  40. return x < 0 ? ((x + 1) % y) + y - 1 : x % y;
  41. }
  42. void setup()
  43. {
  44. // Set maximum speed and acceleration
  45. rotStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  46. rotStepper.setAcceleration(maxAcceleration); // Adjust as needed
  47. inOutStepper.setMaxSpeed(maxSpeed); // Adjust as needed
  48. inOutStepper.setAcceleration(maxAcceleration); // Adjust as needed
  49. // Add steppers to MultiStepper
  50. multiStepper.addStepper(rotStepper);
  51. multiStepper.addStepper(inOutStepper);
  52. // Initialize serial communication
  53. Serial.begin(115200);
  54. Serial.println("Table: Mini Dune Weaver");
  55. Serial.println("Drivers: ULN2003");
  56. Serial.println("Version: 1.4.0");
  57. Serial.println("R");
  58. homing();
  59. }
  60. void loop()
  61. {
  62. // Check for incoming serial commands or theta-rho pairs
  63. if (Serial.available() > 0)
  64. {
  65. String input = Serial.readStringUntil('\n');
  66. // Ignore invalid messages
  67. if (input != "HOME" && input != "RESET_THETA" && input != "GET_VERSION" && !input.startsWith("SET_SPEED") && !input.endsWith(";"))
  68. {
  69. Serial.println("IGNORED");
  70. return;
  71. }
  72. // Example: The user calls "SET_SPEED 60" => 60% of maxSpeed
  73. if (input.startsWith("SET_SPEED"))
  74. {
  75. // Parse out the speed value from the command string
  76. int spaceIndex = input.indexOf(' ');
  77. if (spaceIndex != -1)
  78. {
  79. String speedStr = input.substring(spaceIndex + 1);
  80. float speedPercentage = speedStr.toFloat();
  81. // Make sure the percentage is valid
  82. if (speedPercentage >= 1.0 && speedPercentage <= 100.0)
  83. {
  84. // Convert percentage to actual speed
  85. long newSpeed = (speedPercentage / 100.0) * maxSpeed;
  86. // Set the stepper speeds
  87. rotStepper.setMaxSpeed(newSpeed);
  88. inOutStepper.setMaxSpeed(newSpeed);
  89. Serial.println("SPEED_SET");
  90. Serial.println("R");
  91. }
  92. else
  93. {
  94. Serial.println("INVALID_SPEED");
  95. }
  96. }
  97. else
  98. {
  99. Serial.println("INVALID_COMMAND");
  100. }
  101. return;
  102. }
  103. if (input == "HOME")
  104. {
  105. homing();
  106. return;
  107. }
  108. if (input == "RESET_THETA")
  109. {
  110. isFirstCoordinates = true;
  111. currentTheta = 0;
  112. currentRho = 0;
  113. Serial.println("THETA_RESET"); // Notify Python
  114. Serial.println("R");
  115. return;
  116. }
  117. // If not a command, assume it's a batch of theta-rho pairs
  118. if (!batchComplete)
  119. {
  120. int pairIndex = 0;
  121. int startIdx = 0;
  122. // Split the batch line into individual theta-rho pairs
  123. while (pairIndex < BUFFER_SIZE)
  124. {
  125. int endIdx = input.indexOf(";", startIdx);
  126. if (endIdx == -1)
  127. break; // No more pairs in the line
  128. String pair = input.substring(startIdx, endIdx);
  129. int commaIndex = pair.indexOf(',');
  130. // Parse theta and rho values
  131. double theta = pair.substring(0, commaIndex).toDouble(); // Theta in radians
  132. double rho = pair.substring(commaIndex + 1).toDouble(); // Rho (0 to 1)
  133. buffer[pairIndex][0] = theta;
  134. buffer[pairIndex][1] = rho;
  135. pairIndex++;
  136. startIdx = endIdx + 1; // Move to next pair
  137. }
  138. bufferCount = pairIndex;
  139. batchComplete = true;
  140. }
  141. }
  142. // Process the buffer if a batch is ready
  143. if (batchComplete && bufferCount > 0)
  144. {
  145. rotStepper.enableOutputs();
  146. inOutStepper.enableOutputs();
  147. // Start interpolation from the current position
  148. double startTheta = currentTheta;
  149. double startRho = currentRho;
  150. if (isFirstCoordinates) {
  151. homing();
  152. isFirstCoordinates = false;
  153. }
  154. for (int i = 0; i < bufferCount; i++)
  155. {
  156. interpolatePath(
  157. startTheta, startRho,
  158. buffer[i][0], buffer[i][1],
  159. subSteps
  160. );
  161. // Update the starting point for the next segment
  162. startTheta = buffer[i][0];
  163. startRho = buffer[i][1];
  164. }
  165. rotStepper.disableOutputs();
  166. inOutStepper.disableOutputs();
  167. batchComplete = false; // Reset batch flag
  168. bufferCount = 0; // Clear buffer
  169. Serial.println("R");
  170. }
  171. }
  172. void homing()
  173. {
  174. Serial.println("HOMING");
  175. inOutStepper.enableOutputs();
  176. // Move inOutStepper inward for homing
  177. inOutStepper.setSpeed(-maxSpeed); // Adjust speed for homing
  178. long currentInOut = inOutStepper.currentPosition();
  179. while (true)
  180. {
  181. inOutStepper.runSpeed();
  182. if (inOutStepper.currentPosition() <= currentInOut - inOut_total_steps * 1.1)
  183. { // Adjust distance for homing
  184. break;
  185. }
  186. }
  187. inOutStepper.setCurrentPosition(0); // Set home position
  188. rotStepper.setCurrentPosition(0);
  189. currentTheta = 0.0; // Reset polar coordinates
  190. currentRho = 0.0;
  191. inOutStepper.disableOutputs();
  192. Serial.println("HOMED");
  193. }
  194. void movePolar(double theta, double rho)
  195. {
  196. if (rho < 0.0)
  197. rho = 0.0;
  198. else if (rho > 1.0)
  199. rho = 1.0;
  200. long rotSteps = lround(theta * (rot_total_steps / (2.0f * M_PI)));
  201. double revolutions = theta / (2.0 * M_PI);
  202. long offsetSteps = lround(revolutions * (rot_total_steps / gearRatio));
  203. // Now inOutSteps is always derived from the absolute rho, not incrementally
  204. long inOutSteps = lround(rho * inOut_total_steps);
  205. inOutSteps -= offsetSteps;
  206. long targetPositions[2] = {rotSteps, inOutSteps};
  207. multiStepper.moveTo(targetPositions);
  208. multiStepper.runSpeedToPosition(); // Blocking call
  209. // Update current coordinates
  210. currentTheta = theta;
  211. currentRho = rho;
  212. }
  213. void interpolatePath(double startTheta, double startRho, double endTheta, double endRho, double subSteps)
  214. {
  215. // Calculate the total distance in the polar coordinate system
  216. double distance = sqrt(pow(endTheta - startTheta, 2) + pow(endRho - startRho, 2));
  217. long numSteps = max(1, (int)(distance / subSteps)); // Ensure at least one step
  218. for (long step = 0; step <= numSteps; step++)
  219. {
  220. double t = (double)step / numSteps; // Interpolation factor (0 to 1)
  221. double interpolatedTheta = startTheta + t * (endTheta - startTheta);
  222. double interpolatedRho = startRho + t * (endRho - startRho);
  223. // Move to the interpolated theta-rho
  224. movePolar(interpolatedTheta, interpolatedRho);
  225. }
  226. }